벨로우즈 신축이음관은 구조적 특성으로 인해 큰 변위 용량을 갖으며 과도한 상대변위에 의한 매립 배관 시스템의 손상을 저감시키기 위해 연결부로써 사용된다. 벨로우즈 신축이음관의 내진성능 평가를 위한 연구에서 한계상태는 변형률을 적용하였지만 변형률 기반 한계상태는 벨로우즈 신축이음관의 큰 변위용량을 고려할 수 없다. 또한 벨로우즈 신축이음관의 성능평가와 한계상태 분석을 위한 해석적 및 실험적 연구는 수행된 사례가 극히 적다. 따라서 본 연구는 단조 및 반복하중을 받는 벨로우즈 신축이 음관의 해석적 연구를 통해 벨로우즈 신축이음관의 한계상태를 분석하였다. 결과적으로 단조하중 보다 반복하중을 받는 벨로우즈 신축이음관은 더 낮은 변위에서 누출이 발생하였다. 반복하중으로 인한 피 로 및 라체팅 현상으로 인해 단조하중 보다 낮은 변위의 성능을 갖는 것으로 보여진다. 따라서 반복하 중에서 관측된 변위응답을 기반으로 벨로우즈 신축이음관의 내진성능 평가를 수행하는 것이 보수적일 것으로 판단된다.
Bellows expansion joints enhance the displacement performance of piping systems owing to their unique geometrical features. However, structural uncertainties such as wall thinning in convolutions, a byproduct of the manufacturing process, can impair their structural integrity. This study addresses such issues by conducting a global sensitivity analysis to assess the impact of these uncertainties on the performance of bellows expansion joints under monotonic loading. Global sensitivity analysis, which examines main and nth order interaction effects, is computationally expensive. To mitigate this, we employed a surrogate model-based approach using an artificial neural network. This model demonstrated robust prediction capabilities, as evidenced by metrics such as the coefficient of determination. The sensitivity indices of the main effect for the 2-ply and 3-ply bellows at the sixth convolution were 0.3340 and 0.3233, respectively. The sensitivity index of the sixth convolution was larger than that of other convolutions because the maximum deformation of the bellows expansion joint under monotonic bending load occurs around it. Interestingly, the sensitivity index for the interaction effect was negligible (0.01%) compared to the main effect, suggesting minimal activity between uncertainty factors across convolutions. Notably, bellows expansion joints under repetitive loading exhibit more complex behaviors, with the initial leakage typically occurring at the convolution. Therefore, future studies should focus on the structural uncertainties of bellows expansion joints under cyclic loading and employ a surrogate model for comprehensive global sensitivity analysis.
배관 시스템은 기체 및 액체 등의 에너지원을 수송하기 위해 사용되며 주로 건물 내부에 설치되거나 지반에 매립되 어 설치된다. 매립된 배관 시스템은 지진이나 지반침하와 같은 큰 상대변위를 받을 수 있으며 이는 배관의 연결부에 손상을 야 기할 수 있다. 벨로우즈는 기하학적 특성으로 축방향 및 회전 변형을 일부 허용한다. 그러므로 벨로우즈 신축관이음을 적용하면 큰 상대변위에 의한 손상을 줄일 수 있는 것으로 예상된다. 하지만 벨로우즈의 성형과정에서 회선의 벽 두께 감소가 발생할 수 있으며 이는 휨 및 인장 성능에 영향을 미칠 수 있다. 본 연구는 단조하중을 받는 벨로우즈 신축관이음의 성능을 분석하기 위 한 실험적 연구를 수행하였다. 또한 단조하중 실험 결과를 바탕으로 벨로우즈 신축관이음의 유한요소모델을 구축하였으며 실험 결과와 비교하여 검증하였다. 검증된 유한요소 모델을 이용하여 회선의 두께 감소에 의한 성능 변화를 분석하였다. 벽 두께 감 소율은 5%, 10%, 15%, 20%, 25%로 가정하였다. 해석 결과 인장 및 휨 하중에 따른 하중-변위 관계의 전체적인 강성과 최대 하 중이 감소하는 것으로 나타났다. 벽 두께 감소율이 25%일 때 인장 및 휨 하중에 따른 최대 하중은 각각 14%, 26% 감소하는 것 으로 나타났다.
In this study, flexural strength properties of SC shear walls were investigated through static pushover test. Failure modes and stiffness characteristics of SC shear walls under lateral loads were inspected by analyzing the experimental results. Main failures of unstiffened SC shear walls were found to be the type of bending shear failure due to the unbonding of the steel plate at the concrete interface. The ductility capacity of SC structures was also confirmed to be improved, which is considered to be a confining effect on steel plates in the longitudinal behavior of SC shear walls.
본 연구에서는 축력을 받고 있는 철근콘크리트 보에 대한 4점 굽힘 시험을 실시하였다. 조작변인으로 변위제어를 통한 단조하중과 반복하중이 있다. 통제변인으로는 축력 강도와 4점 굽힘 시험 등 조작변인 이외의 모든 변수를 동일하게 실시하였다. 조작변인에 따른 변위-하중 그래프를 관찰하였다. 관찰결과 변-하중 그래프의 초기 기울기와 최대하중의 변위는 거의 일치하였다. 하중 변화 양상도 동일하였다. 다만 최대하중의 크기가 다르게 나타났다. 파괴 형상 또한 다르게 나타났다.
본 연구는 탄소섬유시트로 보강된 철근콘크리트 보에 정적하중과 반복하중이 작용할 때의 거동을 다루고 있다. 탄소섬유시트로 보강된 RC보의 정적실험 결과를 기준으로 반복하중 실험을 수행하였다. 반복하중 실험의 변수는 탄소섬유시트 겹수, 단부 U밴드 유무, 반복하중 재하속도 등이 있다. 실험결과를 통해 단조증가하중과 반복하중 하에서의 에너지 소산량과 휨 강성의 변화, 연성특성, 강도특성, 휨 거동 등을 고찰하며, 또한 탄소섬유시트의 파단변형률을 평가하였다. 본 연구에서는 반복하중 실험 결과를 바탕으로 탄소섬유시트로 보강된 RC보의 정적 및 동적 휨 보강 해석 및 설계에 필요한 기초자료를 제시하고자 한다.