Intergovernmental Panel on Climate Change (IPCC) provides various prospects of future climate change under the Representative Concentration Pathways (RCP) scenarios using General Circulation Models (GCMs) of Coupled Model Intercomparison Project (CMIP). This paper describes a modified application of Ensemble Bayesian Model Averaging (EBMA) to produce daily mean temperature ensembles using 19 GCMs provided by CMIP. We proposed two types of approach: (1) monthly weighting scheme for a whole area (EBMA.v1) and (2) monthly weighting for each grid point (EBMA.v2), which can take into account the spatially heterogeneous pattern of GCM. For the training period of 1979- 2005 for East Asia, 9,855 sets of daily temperature ensembles (27 years × 365 days) were produced and compared to the ERA-Interim reanalysis data of European Centre for Medium-Range Weather Forecasts (ECMWF), which showed better validation statistics than the general mean and median ensembles. In particular, EBMA.v2 outperformed EBMA.v1 by diminishing the large errors of inland areas where the surface heterogeneity is larger than the ocean. The EBMA.v2 was able to handle the problem of spatial variability by employing monthly and spatially varying weighting scheme. We finally produced daily mean temperature ensembles for the period of 2006-2100 by using the EBMA.v2 under the RCP 6.0 scenario, which are going to be provided on the web.
Many recent studies have concentrated upon the radiative effects of atmospheric aerosols. Though their scattering and absorption of radiation, aerosols can also induce some other important environment effects. In this study, new radiation code and aerosol data within Atmosphere General Circulation Model (AGCM) is used to assess the aerosol radiative forcing and to analyze relative climate effects. The new Kangnung National University AGCM Stratospheric-15 (KNU AGCM ST15) was integrated by using two sets of radiative effect of aerosols : CTRL as not a radiative effect of aerosols and AERO as a radiative effect of aerosols. Two cases show the difference of net shortwave radiation budget at top-of-atmosphere (TOA) is found to be about -3.4 Wm-2, at the surface (SFC) is about -5.6 Wm-2. Consequently the mean atmospheric absorption due to aerosol layer in global is about 2.2 Wm-2. This result confirms the existence of a negative forcing due to the direct effect of aerosols at the surface and TOA in global annual mean. In addition, it is found that cooling over at the surface air temperature due to radiative effect of aerosols is about 0.17 ℃. It is estimated that radiative forcing of the net upward longwave radiation taken as the indirect effect of aerosol is much smaller than that of the direct effect as there is about 0.2 Wm-2 of positive forcing both at TOA and at SFC. From this study, It made an accurate estimation of considering effect of aerosols that is negative effect. This may slow the rate of projected global warming during the 21st century.