The purpose of this study has a purpose to evaluate shear ability, ductility and energy dissertation of specimens that is to be applied to jacket using wrapping method. The experiments was conducted as a condition that simultaneously applied axial load and transverse force. The results of experiments represent story-displacement ratio, the stiffness, energy dissertation, plastic rotation which mean seismic resistance ablity on structure. And It represents the form of crack ditribution and failure in extreme stages. Based on the results of this experiment, Design examples are given to show the performance evaluation for the column reinforcing of old school buildings using nonlinear analysis is going to be conducted. Therefore, it is possible to apply the seismic retrofit method to public facilities.
This paper reports the results of an experimental examination using X-rays to test annealing materials for lapped bearing steel (STB2), to confirm the validity of the weighted averaging analysis method. The distribution behavior for the sin diagram and the presence or absence of differences in the peak method, half-value breadth method, and centroid method were investigated. When lapping the annealed bearing steel (STB2) material, a residual stress state with a non-directional steep gradient appeared in the surface layer, and it was found that the weighted averaging analysis method was effective. If there is a steep stress gradient, the sin diagram is curved and the diffraction intensity distribution curve becomes asymmetric, resulting in a difference between the peak method, half-value breadth method, and centroid method. This phenomenon was evident when the stress gradient was more than 2~3 kg/mm2/μm. In this case, if the position of the diffraction line is determined using the centroid method and the weighted averaging analysis method is applied, the stress value on the surface and the stress gradient under the surface can be obtained more accurately. When the stress gradient becomes a problem, since the curvature of the sin diagram appears clearly in the region of sin > 0.5, it is necessary to increase the inclination angle as much as possible. In the case of a lapping layer, a more accurate value can be obtained by considering in the weighted averaging analysis method. In an isotropic biaxial residual stress state, the presence or absence of can be determined as the presence or absence of strain for sin≈0.4.
Aluminum alloys are the light weight materials, they are commonly used in many industrial applications such as electronic, aerospace, automotive, and medical industry. Because they are used in these such applications. Therefore, their light weight and high surface quality are required. In this paper, the surface improvement round flat aluminum alloy using lapping finishing method was explored. In order to find the optimal condition, lapping parameters such as, rotational speeds, abrasive grain sizes of pad, processing times, and lapping oils were investigated in this study. The improvement in surface roughness was found to be highest with optimal condition at 200 rpm of rotational speed, 1 ㎛ abrasive grain size of pad, 0.5ml of light oil for 720 sec. By using the optimal condition, the initial surface roughness Ra of round flat aluminum alloy can be enhanced from 2.59㎛ to 0.02 ㎛. This can be concluded that the small CNC machine with lapping finishing method can be used to enhance the surface roughness of round flat aluminum alloy effectively.
이 연구는 지진하중 작용시 RC 교각의 겹침이음부에서 발생할 수 있는 종방향 철근의 부착파괴를 방지하기 위한 FRP 래핑 보강공법에 관한 실험적 연구이다. FRP 래핑공법은 수작업 또는 장비를 이용해 교각에 유리섬유를 래핑하고 에폭시 수지를 이용해 고정시키는 공법이다. FRP 래핑공법의 내진성능 보강효과를 확인하기 위해, 겹침이음부가 존재하는 6개의 교각 실험체에 대해 준정적실험을 수행하였다. 실험결과 FRP 래핑공법으로 보강한 교각은 변위연성도 및 에너지소산 능력이 증가하 였으며, 무보강 실험체에 비해 연성거동함을 확인하였다. 또한, FRP 래핑 보강량과 보강효과는 선형비례하지 않으므로 최적 설 계를 통해 교각을 보강하는 것이 효과적임을 확인하였다.
The purpose of this paper was to provide the co-relation lapping conditions of a spectacle metal components. The main elements of lapping conditions were composed of rotation velocity, lapping time, graphite kinds, product quantity and faulty product ratio those were co-related and influenced at each other. The optimal working conditions of lapping were controled the each lapping conditions, mutual relations and reciprocal actions. It was studied the optimal lapping conditions those graphite kinds-rotation velocity-faulty product ratio, rotation velocity-lapping time, rotation velocity-product quantity. Based on these results, the optimal conditions were that the level of graphite was midiμm and rotation velocity was 40∼(60rpm.
In this study, analyze the proper repair works and after repair works before it, such as via the structural analysis and investigation of various site of damaged of suspension bridge due to the collision of the vehicle is an accident artificial, make sure those good analysis result has been.