Capacitive deionization (CDI) process is an emerging process for water desalination. Recently, there has been a major development of architectures in CDI cells using carbon flow electrodes with membrane, called flow-electrode capacitive deionization (FCDI). In FCDI, the advantage is continuous desalination due to the carbon flow electrodes. Numerous research groups dedicated to develop the FCDI process, however, a clear pre-treatment of carbon flow electrodes was not suggested. Study herein, present a clear understanding of effects of pre-treatment of activated carbon based on sonication in the carbon flow electrodes for the basics results with respect to adsorption performance.
본 연구는 막 결합형 축전식 탈염공정에서의 이온교환막의 두께와 탈착간의 관계를 규명하기 위하여 진행하였다. APSf/SPEEK 양, 음이온교환고분자를 합성하여 시판되는 탄소전극에 직접 캐스팅하여 이온교환막이 결합된 탄소전극을 제조하였다. 양, 음이온교환고분자를 캐스팅 하지 않은 것, 1회 캐스팅, 2회 캐스팅한 것으로 탈착시험을 하였다. 탈착 조건은 –0.1, -0.3, -0.5, -1.0 V로 하였으며 100 mg/L의 NaCl 수용액을 공급액으로 하여 완전 흡착을 한 다음 증류수로 공급액을 변경하여 완전탈착이 될 때 까지 관찰 하였다. 이온교환막의 두께가 두꺼워질수록 완전탈착까지 걸리는 시간이 증가하였고 높은 전위의 탈착 전압에서는 막의 두께가 탈착에 그다지 큰 영향을 끼치지 않는 것을 확인하였다.
본 연구에서는 막 결합형 축전식 탈염공정에 적용을 위해 폴리비닐플루오라이드를 고분자 지지체로 사용하여 양이 온 및 음이온교환수지를 배합하여 제작된 불균질 이온교환막을 탄소전극에 결합하여 염 제거 효율을 알아보고자 하였다. 불균 질 이온교환막의 배합 조건은 용매, 고분자 지지체, 이온교환수지를 7 : 2 : 1의 무게 비율로 하였으며 탄소전극에 직접 캐스팅 하였다. 운전조건으로 공급액은 주로 NaCl 수용액에 대하여 흡착전압, 시간, 공급액의 농도, 유속, 탈착전압, 시간 등에 대하여 염 제거 효율을 측정하였으며 이 외에 CaCl2과 MgSO4 수용액에 대하여서도 측정하였다. 대표적으로 NaCl 100 mg/L 용액의 15 mL/min에서 1.5 V, 3분의 흡착조건, -0.1 V, 3분의 탈착조건에서 98%의 염 제거 효율을 보였으며, CaCl2과 MgSO4는 100 mg/L, 15 mL/min에서 1.2 V, 3분의 흡착조건, -0.5 V, 5분의 탈착조건에서 각각 70, 59%의 염 제거 효율을 보였다.
본 연구에서는 막 결합형 축전식 탈염공정(Membrane capacitive deionization)에 적용할 폴리비닐플루오라이드를 지지체로 사용한 불균질 이온교환막을 제조하였다. 폴리비닐플루오라이드를 유기용매인 NMP에 녹여 상용화된 양이온 및 음이온교환수지를 분산시켜 제조하였고 그 배합비율은 용매와 지지체, 이온교환 수지 순으로 7:2:1로 고정하였다. 상용화된 카본전극에 불균질이온교환막을 250㎛두께의 casting knife를 이용하여 직접 캐스팅하여 제조하였다. 기존의 사각형 형태의 유로를 가진 축전식 탈염공정 셀의 데드존으로 인한 효율감소를 개선한 육각형 형태의 셀에 전극을 장착하여 실험을 진행하였다. 먼저 CFD분석을 통해 유동패턴을 조사하였고, 실험조건은 흡착전압, 흡착시간, 공급액의 농도, 유속등을 달리하여 탈염효율을 비교하였다.
본 연구에서는 막 결합형 축전식 탈염공정에 적용하기 위하여 고분자 지지체 polyvinylidene fluoride (PVDF)에 상용화된 양이온 및 음이온교환수지를 배합하여 불균질 이온교환막을 제조하였다. PVDF와 이온교환수지의 배합비율을 1 : 1, 1.4 : 1, 2 : 1, 3 : 1로 달리하였으며 SEM, 함수율, 이온교환용량, 메탄올 투과도, 이온전도도를 측정하여 물리화학적 특성을 평가하였다. 특성평가 결과 모든 특성을 고려하였을 때 2 : 1의 배합비율이 가장 우수한 값을 나타내었다. 2 : 1의 배합비율로 제조한 불균질 양이온교환막의 함수율은 34%, 이온교환용량은 1.54 meq/g, 이온전도도는 0.019 S/cm, 메탄올 투과도는 2.28 × 10-7~8.86 × 10-7 cm2/s의 값을 나타내었으며 불균질 음이온교환막에서는 각 각 37%, 2.18 meq/g, 0.034 S/cm, 1.46 × 10-7~8.66 × 10-7 cm2/s의 값을 나타내었다.
본 연구에서는 탄소전극에 SPEEK (sulfonated poly ether ether ketone) 양이 온교환막과 APSf (Aminated Polysulfone) 음이온교환막을 코팅하여 CsNO₃ 과 Sr(NO₃)₂의 오염수의 방사성 이온 제거 성능비교 연구를 하였다. 실험은 유속 15,25,35 ml/min에서 진행하였으며 흡탈착 시간 및 전압과 공급수의 농도를 달리하여 실험을 진행하였다. 전압을 0.5~1.5V로 변화시키면서 실험한 결과 1.5V에서 CsNO₃은 98.5%, Sr(NO₃)₂94%의 제거효율을 나타내었다. 결과적으로 1가원소인 Cs이 2가원소인 Sr보다 높은 제거율을 나타냄을 알 수 있었다.
본 연구에서는 막 결합형 축전식탈염공정(Membrane capacitive deionization) 을 사용하여 용액 내에 염을 제거하고자 하였다. 기존에 가장 많이 사용되는 사각형 형태의 유로를 가진 CDI 셀 보다 좋은 탈염성능을 위해 유로의 형태와 크기를 달리하여 실험을 진행하였다. 먼저 CFD분석을 통해 유동패턴을 조사하여 각각의 조건에 따른 데드존을 찾아내는 실험을 진행하였고 육각형 형태의 모양으로 새로운 셀을 디자인하여 실험하였다. 실험조건을 흡착전압, 흡착시간, 탈착 전압, 농도, 유속을 달리하여 탈염효율을 비교하였다.
본 연구에서는 수용성 고분자인 Polyvinylalcohol (PVA)를 이용하여 4급암모늄기를 도입한 음이온교환고분자와 술폰기가 도입된 양이온교환고분자를 합성하였다. 합성한 이온교환고분자는 FT-IR, 함수율, 이온교환용량 등의 특성평가를 실시하였으며, 탄소전극에 캐스팅법으로 이온교환고분자 용액을 코팅하여 전극을 제조하였다. 제조한 탄소전극은 정육각형 형태의 유로를 가지는 셀을 이용하여 염 제거 효율을 비교하였다. 탈염 실험은 유속 15, 25, 35 ml/min에서 진행 하였으며 흡⋅탈착 시간 및 전압을 변화시켜가며 실시하였다. 또한 공급액의 농 도 및 종류를 달리하여 실험하였다.