검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 구조 요소의 응력해석을 위한 무요소 RPIM(Meshfree Radial Point Interpolation Methods)법을 제시한다. 이를 위하여 먼저 무요소법의 형상함수와 무요소 RPIM법의 정식화 과정 및 프로그래밍을 간략히 한다. 절점보간법은 방사기저함수와 다항기저함수를 포함하고 있고 이 중 다항기저함수는 특이성문제를 극복할 수 있다. 게다가 무요소 RPIM법의 보간함수는 영향영역의 절점을 통과하고 형상함수는 크로네커 델타 성질을 갖고 있으므로 최소자승법에 기반을 둔 무요소법보다 쉽게 필수경계조건을 만족시킨다. 본 연구의 정확성을 확인하기 위하여, 캔틸레버형 평판, 유공평판, 속이 빈 원통 문제의 수치예제를 수행하고 이론 해와 유한요소법 결과를 비교, 분석한다.
        4,000원
        2.
        2005.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 수치적분 정도를 향상시킬 수 있는 새로운 무요소 기법을 제안한파 저자들에 의해 페트로프-갤러킨 자연요소법(PG-NEM)이라 명명된 이 새로운 기법은 보로노이 다이어그램과 델라우니 삼각화에 기반을 두고 있으며, 이는 BG-NEM이라 불리는 기존의 자연요소법과 개념적으로 동일하다. 하지만, 동일한 시험 형상함수와 시도 형상함수를 선택하는 BG-NEM과는 달리, PG-NEM에서는 지지영역이 적분을 위한 배경격자에 정확하게 일치하도록 시험 형상함수를 독립적으로 선택하는 페트로프-갤러킨 개념에 기반을 두고 있다. 따라서, 제안된 기법은 BG-NEM과 비교하여 수치적분 정도를 현저히 향상시킬 것으로 기대된다.
        4,000원
        3.
        2001.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 무요소법의 일종인 element-free Galerkin 방법(EFGM)을 이용한 새로운 적응적 해석법을 제안하였다. 이 방법의 핵심은 Delaunay 삼각화에 기초를 둔 적분 격자를 기초로 수치적분과 적응적인 절점의 추가 및 소거를 수행하는 것이다. 이러한 적응적 해석법은 적분격자의 분할이나 이를 위한 추가적인 정보에 대한 관리가 필요 없이 간편하게 적응적 해석을 수행할 수 있다. 또한 균열의 진전과 같은 다단계 적응적 해석에 있어서도 매 해석단계별로 평가된 오차에 기초를 둔 최적 해석모델이 Delaunay 삼각화에 의해 구성되도록 하였다. 이러한 특성은 요소의 구성으로부터 자유로운 무요소법의 장점을 최대한 활용하여 해석모델의 구축을 보다 원활하게 수행할 수 있다. 적응적 해석에 기초가 되는 해석 후 오차평가는 계산된 응력과 투영응력과의 차이를 오차로 추정하는 투영응력법을 이용하였다. 균열진전을 포함하는 2차원예제의 해석을 수행한 결과 제안된 해석법의 타당성과 적용성을 입증할 수 있었다.
        4,200원
        4.
        1999.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 요소를 사용하지 않은 수치해석기법인 무요소법 중에서 다중해상도(multi-resolution)특성이 내재되어 있는 Reproducing Kernel Particle Method (RKPM)의 이중스케일 분해기법을 사용하여 RKPM의 형상함수를 상단성분과 하단성분으로 분리하고 이를 3차원 선형탄성해석과정에 적용하여 von Mises 응력장의 상하단성분을 유도하였다. 유도된 응력장의 상단성분을 이용하여 후처리과정을 거치지 않고도 응력의 고변화도 부위를 손쉽게 파악할 수 있는 기법을 개발하였으며 이를 이용한 효율적인 적응적 세분화기법의 적용가능성을 연구하였다. 대표적인 2차원 및 3차원 응력집중 문제에 적용하여 응력집중부위를 파악하고 간단한 적응적 세분화과정에 따른 절점추가를 통하여 해의 정도 향상을 파악해 본 결과, 본 연구에서 개발된 기법이 응력집중부위를 정확히 판정할 수 있었으며 효율적인 적응적 세분화기법의 유용한 도구로서 활용될 수 있음을 검증하였다.
        4,000원
        5.
        1999.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 요소망의 구성없이 공학적인 문제의 해석이 가능한 무요소법이 많은 학자들에 의하여 제안되고 이에 관한 집중적인 연구가 이루어지고 있다. 본 연구에서는 갤러킨 정식화에 의한 무요소법을 고체역학적인 문제에 적용하여 이의 특성을 규명하고자 하였다. 특히 일반적으로 사용되고 있는 몇가지 가중 함수를 선정하여 이들이 해석결과에 미치는 특성과 절점 배치방법 및 가중 함수의 영향 영역 변화에 따른 해의 정확도 등을 서로 비교하고 검토하였다. 연구결과로 가중 함수의 형태와 영향 영역의 크기, 기정 함수의 차수와 절점 배치방법 등은 서로 상관관계를 갖고 해의 정확도에 크게 영향을 미침을 확인할 수 있었고 이의 적절한 선정은 무요소해석의 중요한 요건임을 알 수 있었다.
        4,000원