As the modern society is rapidly developing and people become affluent in materials, many new chemical compounds in different forms of products (e.g., antibiotics, pesticides, detergents, personal care products and plastic goods) are produced, used, and disposed of to the environments. Some of them are persistently having a harmful impact on the environment and mimicking endocrine properties; in general they are present in the environment at low concentrations, so they are called organic pollutants. These organic micropollutants flow to sewage treatment plants via different routes. In this study, the generation characteristics, exposure pathways, detection levels, and environmental impacts of organic micropollutants were critically reviewed. In addition, currently available risk assessment methods and management systems for the compounds were reviewed. The United States Environmental Protection Agency (US EPA), for example, has monitored organic micropollutants and set the monitoring and management of some of the compounds as a priority. To effectively manage organic micropollutants in sewer systems, therefore, we should first monitor organic micropollutants of potential concern and then make a watch list of specific substances systematically, as described in guidelines on listing water pollutants in industrial wastewater.
The UV/chlorine process is a UV-based advanced oxidation process for removing various organic pollutants in water. The process is becoming increasingly popular because of its effectiveness in practice. It is important to the safe and efficient operation of a UV/chlorine process that the optimal operating conditions for both target removal objective and saving energy are determined. Treatment efficiency of target compounds in UV/chlorine process was mainly affected by pH and scavenging factor. In this study, kinetic based mathematical model considering water characteristics and electrical energy dose calculations model was developed to predict of treatment efficiency and optimal operating conditions. The model equation was validated for the UV/chlorine process at the laboratory scale and in pilot tests at water treatment plants.
In order to research the adsorption removal characteristics of trace organic by-products in disinfection of drinking water by biological activated carbon(BAC), water samples disinfected with Cl_2, O_3 and ClO_2 after treatment by fluidized-bed system with water added with humic acid(l0㎎/L) were investigated the formation and the removal of trihalomethanes (THMs), and the trace organic by-products by gas chromatography(GC) & gas chromatography/mass selective detector(GC/MSD). Control was used by activated carbon(AC) and water added with hurnic acid(HA). The results were summarized as follow ; The THMs removal effect of BAC by chlorination was in lower 90 % than that of control(HA), the sorts of oxidants formed by Cl_2, O3 and ClO_2 were that O_3 was very fewer than Cl_2 or ClO_2 and that ClO_2 was fewer than Cl_2 The trace organic by-products were esters and phthalates etc. Based on results above, it is concluded that BAC was appeared the more desirable adsorption-degradation removal characteristics than that of AC.