부유식 해상태양광 설비는 패널 지지를 위한 프레임 구조물, 구조체의 부력 제공을 위한 부유체와 전체 시스템의 거동을 제한하는 계류시설로 구성되어 있다. 계류시설은 구조물의 지지조건으로서의 역 할을 통해 안정적인 발전량 수급에 기여한다. 하지만 해당 시스템은 설치된 해상환경 특성상 계류선의 파단 및 손상 시 직접적인 탐지가 불가능해 유지관리에 어려움이 있다. 따라서 본 연구에서는 패널지 지 프레임 구조체에 가속도 센서 부착을 가정하여, 해당 센서 계측값을 토대로 계류설비에서 발생한 파단 및 손상이 발생한 위치를 추정하는 알고리즘을 개발하였다. 알고리즘은 비지도학습 인공지능의 일종인 오토인코더를 활용하여 가속도 계측값의 재현 과정을 통해 정상상태의 구조 응답을 학습한 모 델이 비정상상태의 계측값을 재현 시 발생한 오차를 통해 손상 발생 여부와 위치를 실시간 탐지하도 록 구성하였다. 정상상태 구조응답을 기반으로 한 모델의 학습을 위해 패널지지 구조체를 10x10 격자 형으로 결합한 다중 결합 시스템에 불규칙파랑을 환경하중으로 적용함을 통해 발생한 6자유도 가속도 데이터를 확보하였다. 계류시설의 손상 발생 시 주된 변화 인자 탐지를 위해 상관성 분석과 민감도 분 석을 실시하여 손상 위치 추정 알고리즘에 적용할 주요 인자를 선별하여 학습 및 추정 성능에 대한 비교 분석을 수행하였다. 구축된 알고리즘의 테스트를 위해 총 5개 종 손상 케이스 데이터셋을 구축하 여 손상 위치 추정 성능을 비교하였다. 본 연구를 통해 계류 시설에 발생한 손상 여부 및 위치를 추정 하여 부유식 해상태양광 설비의 선제적 유지관리에 기여할 수 있을 것으로 기대된다.
기존 화석 연료의 고갈 및 환경오염의 문제와 대용량 발전을 위하여 해양환경 및 자원을 이용한 친환경에너지 발전에 대한 연구 및 개발이 증가하고 있으며, 이 중 높은 발전 효율을 가진 해상태양광 발전에 대한 연구가 크게 증가하고 있다. 환경하중이 비교적 약한 내수조건과 달리, 환경하중이 강한 해양에서의 태양광 발전을 위해서는 더 강한 강성의 구조재를 사용해야 한다. 하지만, 구조재의 생 산 가능성, 무게를 포함한 구조물 특성 및 경제적 효율성 등의 제약조건이 발생할 수 있다. 따라서, 본 연구에서는 부유식 방파제를 설 치함으로써 태양광구조물에 작용하는 파랑하중을 감소시켜 구조재의 강성 강화를 최소화하고자 하였다. 부유식 방파제의 크기 및 구 조물로부터의 거리를 변화하여 이에 따른 파랑하중 및 구조재 응력의 감소 정도를 확인하였다. 다수 부력체의 상호간섭을 고려한 파 랑하중의 경우, 고차경계요소법(Higher-Order Boundary Element Emthod)을 이용해 산정하였으며, 구조재에 작용하는 응력은 유한요 소법(Finite Element Method)을 통해 평가하였다. 각 조건에서의 최대응력을 분석 및 비교함으로써 해상태양광 발전 시스템에 대한 부 유식 방파제의 영향을 확인하였으며, 부유식 방파제의 크기가 파랑하중 및 구조재 응력 감소에 큰 영향을 미침을 확인하였다.
The floating PV generation structure installed on the surface of water has been recently issued as a representative items for the low carbon and green growth campaign. Moreover, the studies and developments for the structure and construction improvements of floating PV generation structure have been in progress. For example, in the previous research, the floating PV generation structure consisted of pultruded FRP and SMC FRP members is suggested. In this study, we conduct the analytical and experimental studies for estimating the structural characteristics of SMC FRP vertical members. From the analytical and experimental results, it is found that SMC FRP vertical members used for floating PV generation structure have sufficient structural safety and stability.
Recently, environmental problems associated with the excessive use of fossil fuel are hot issue throughout the world. As an alternative energy resource, the importance of renewable energy is continuously rising. Especially, growth rate of photovoltaic energy generation is the best. In this paper, we present the result of investigations pertaining to the development of photovoltaic energy generation system installed on the sea. The system is consisted of photovoltaic energy generation panel, panel supporting structure, and floating structure. In the panel supporting structure, fiber reinforced polymer plastic (FRP) member manufactured by the pultrusion process is used. A floating type PV power generation structures shall be fabricated and this unit structure (I.e., module) is connected to extend to the appropriate size considering safety, workability, and economic efficiency. Developed floating type photovoltaic energy generation system is installed at fish farm in the south coast of Korea.
In this paper, we present the result of investigations pertaining to the development of links between unit modules of the floating type photovoltaic energy generation system made of Pultruded FRP. Since the FRP has an excellent corrosion-resistance and high specific strength and stiffness, the FRP material may be highly appreciated for the development of the floating type photovoltaic energy generation system. we discussed the development concepts of the link between unit module of floating type photovoltaic energy generation system made of PFRP, tire, and synthetic fiber, briefly. The floating type photovoltaic energy generation system linked between unit modules is installed successfully at sea site.
이 논문는 펄트루젼 FRP 부재를 이용하여 부유식 태양광발전 시스템을 개발하기 위한 연구의 결과이다. 이미 설치 된 부유식 태양광발전 시스템의 단위구조물에 추가적인 단위구조물의 연결을 위하여 연결부를 설계하여 유한요소 해석을 통한 검증을 실시하였으며, 실제 현장에 기존 단위구조물과 연결부를 포함한 단위구조물의 연결부를 성공적 으로 시공하였다. 또한 기존 설치 구조물의 현장계측을 통하여 변위와 변형률을 얻어 기존의 실험 결과와 비교하여 구조물이 충분히 안전함을 확인하고 이를 바탕으로의 부유식 태양광발전 시스템의 설계 변경을 실시하였다. 설계변 경된 구조물에 대한 유한요소해석을 실시하였고 이를 허용응력과 비교하여 안전성을 검증하였다. 이로써 더욱 효율 적인 구조물을 개발하였으며 구조물의 제작하였다. 설계 변경된 단위구조물의 제작을 위한 펄트루젼 FRP부재의 생 산하였으며, 부유식 태양광 에너지 발전시설 구조물을 조립하였다.
이 논문는 펼 트루천 FRP 부재를 이용하여 부유식 태양광 에너지 발전시설을 개발하기 위한 연구의 결과이다 펄트 루견 FRP는 다른 구조용 재료와 비교하여 부식에 대한 저항성이 크고,단위중량당 강도 및 강성 이 크다는 등 역학적,물리적 성질이 우수하여 부유식 태양광 에너지 발전시설의 개발에 적합하다고 할 수 있다. 이 연구에서는 부유식 태양광 에너지 발전시설의 개발에 관해 간략히 설명한 후 부유식 태양광 에너지 발전시설을 개발하기 위해 제작된 펼트루천 FRP부재의 생산과정을 보여주고 인장 및 압축시험 을 통해 재료의 역학적 성질을 조사하였다. 재료 시험 결과 얻어진 결과를 이용하여 부유식 태양광 에너지 발전 시 설 구조물에 대한 유한요소해석 을 하였다. 유한요소 해석 결과 다양한 경계 및 하중 조건에 대해 각 부재의 구조성능을 검토하였고,볼트접합부의 구조성능을 유지하는 데 필요한 최소한의 하중저항능력을 평가하였다. 또한,강도 예측을 위한 실내실 험을 실시하여 실험결과를 유한요석 결과와 비교분석 하였으며 비교분석 결과 부유식 태양광 에너지 발전시설의 개발을 위한 적절한 볼트접합방 을 선정할 수 있었으며,선정된 볼트접합 방법을 이용하여 부유식 태양광 에너지 발전 시설 구조물을 조립하고 현장에 성공적으로 설치 하였다
In this paper, the structural characteristics of the tracking-type floating PV generation system are presented. Moreover, the structural safety of each tracking-type floating PV generation system is estimated from the analytical results obtained by the finite element analyses.
The floating PV generation system is consisted of unit structures linked by the hinge type connection because the effect of bending moment in the structural system loaded due to the unstable movement of water surface can be minimized. In this paper, the investigation and development process of floating PV generation unit structure is presented.
In this paper, we suggest the new floating type photovoltaic energy generation system, which is improved the structural and economical efficiency, compared with the system developed in the previous research. The structural system in new floating type photovoltaic energy generation system reveals better in structural performance.