In this study, power generation characteristics based on water flow dynamics in a pipe system with a mobile firefighting robot were analyzed using 3D CAD modeling and computational fluid dynamics(CFD) simulations. The water flow field which is significantly affected by applied pressure, generates mechanical torque at the turbine blades, enabling power generation. The inlet pressure of the flow field was set to approximately 6 to 12 bar, and the flow characteristics such as velocity, pressure, and mass flow rate, along with power generation characteristics, were analyzed under various turbine rotational velocities. It was observed that higher inlet pressures resulted in increased torque and mechanical power output at the turbine blades. This research is expected to serve as a fundamental design and data reference to improve the performance of firefighting robots at fire sites.