In case of stone pagoda structures, the various construction types appear, and various damages occur due to exposure to the outdoors for a long time. Such damages can be classified into non-structural damages and structural damages. However, studies for the effects of structural damages on stone pagoda structures are insufficient. Accordingly, this study intends to perform structural modeling and structural analysis according to structural damages of stone pagoda structure, and to perform risk analysis through the fragility curve. So, we expects that this study gives a great contribution to the preservation and maintenance of stone pagoda structures under the various structural damages.
Failure risk investigation of any structure in a seismic zone can be done by the seismic probabilistic risk assessment (SPRA), which became a very attractive area of research in terms of safety measurement. This paper introduces such kind of concept to identify which magnitude in a specific seismic zone will contribute more vulnerable failure point in a structure. Here, for implement this idea a case study on a concrete gravity dam has been carried out. In order to make a correlation between the magnitude and failure risk contribution based on different damage stage, a combination of seismic hazard analysis and the probability of structural collapse is adopted. Therefore, the deaggregation of the mean annual frequency of failure risk by magnitude is used in this study to quantify four different limit stages of failure identification criteria. Consequently, from analyzing the result, in case of concrete gravity dam, this deaggregation approach shows the tensile crack in the base looks more vulnerable damage stage for the specific seismic zone.