Additive manufacturing is a new approach to design and production. This applies in particular to processes such as repair and rework of selected components. Additive manufacturing can produce almost any shape, and from an MRO part perspective, additive manufacturing offers tremendous advantages. The special feature of additive manufacturing is that it is particularly economical for small-volume production as the number of units is irrelevant compared to the existing manufacturing process. The purpose of this study was started from the MRO point of view, and it Identify changes and respond to the Blisk It is a study on the effect of changing the conditions on the path of the toolpath and the CAM during additive manufacturing using CAM after finding suitable conditions. metal powder.The metal powder withstands various corrosive environments and age hardening occurs very slowly. Inconel 718, which can be used in various applications such as nuclear facility-related parts, aerospace, oil facilities, turbines, and valves, was used. This is SUS 316L with good high temperature strength. The variable of the laser used in the study is the laser power, and the variables on the CAM are Operation, Stepover, Pattern, etc. In the relation between laser power and feed, when feed is specified as 500mm/min, laser power of 700W was most suitable. As for the conditions on NX CAM, ADDITIVE PROFILE Stepover was 0.8mm for Operation, and Infills and Finish for Pattern. When stacking, each layer should be overlapped with the result. Therefore, the stepover should be smaller than the laser spot size and reprocessing should be done in terms of repair, so infills and finish were applied to work larger than the actual product shape.
Assessment of noise exposed population is to check the environment noise level and social influence in order to reduce the risks such as annoyance and disturbance that are generated by environmental noise. Also, this method suggests the preferential noise abatement policy and action plan by accurately finding the area that the noise causes harmful effect to human health. Recently, a noise map, which can predict noise in comprehensive area, is used for the assessment of noise exposed population, breaking from the methods using existing measures. In particular, countermeasure for noise can be considered more effectively by using assessment methods of noise exposed population for specific noise level, area, and building types which are the main input factors in noise maps. In this study, we propose noise reduction ranking decision at ship construction and repair process due to noise map.
The object of this paper is to examine the noise generating mechanism at ship construction and repair precess. To accomplish the object; A noise generating mechanism of high noise machine, which is mounted in the ship construction and repair process, was investigated. The measurement method of the noise for the machine by ship construction were investigated. The noise at the 250 points of the manufacturing process machine in the 40 processes of the 3 factories, 3 business fields was measured. The database of the noise was built from the measurement data. The major sound sources and frequency range for the manufacturing process of metal material product machine was investigated.