This research and development analysis provides numerical analysis techniques that can be used conveniently to determining the safety of the current state and to predict the stability in the future. It also seeks to present algorithms of back analysis to develop unified management system for control, prediction, coordination, and information modeling that can reasonably handle appropriate responses to structural behavior at project sites and design changes.
This study investigated the effect of cement type and ground granulated blast furnace slag (GGBS) on the mechanical properties and workability of grout for offshore PSC structures. As the replacement ratio of GGBS increased, the flowability of the grout increased and both intial and final setting times of grout was delayed regardless of cement type. However, the effects of GGBS on the bleeding of grout were different according to the type of cement: as the ratio of GGBS increased, less bleeding was observed for the grout with typeⅠ cement whereas higher bleeding was generated for the grout with type Ⅲ cement. However, there was no significant difference in their compressive strength at 28 day according the different replacement ratio of GGBS from 0 to 40%.