검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        2.
        2011.11 구독 인증기관 무료, 개인회원 유료
        본 연구는 낙동강 담수유입과 하구역내로 하구밀도류 및 바람장 특성에 따른 수괴 거동특성을 예측하고 하구역 해수순환구조를 파악 하기위해 3차원 실시간 해수유동 모형을 구축하고 2007년을 기존 자료를 입력하여 365일의 실시간 수치실험을 수행하였다. 계산결과와 현장조 사결과를 바탕으로 검증을 수행하였으며 바람이 있는조건과 없는 조건을 고려하여 수온과 염분의 경년변화를 살펴보았다.
        4,000원
        3.
        2010.11 KCI 등재 서비스 종료(열람 제한)
        Mass mortalities of cultivated organisms have occurred frequently in Korean coastal waters causing enormous losses to cultivating industry. The preventive measures require continuous observation of farm environment and real-time provision of data. However, line hanging aquaculture farm are generally located far from monitoring buoys and has limitations on installation of heavy equipments. Substituting battery pack for solar panels and miniaturizing size of buoy, newly developed system can be attached to long line hanging aquaculture farm. This system could deliver measured data to users in real-time and contribute to damage mitigation and prevention from mass mortalities as well as finding their causes. The system was installed off Gijang and Yeongdeck in Korea, measuring and transmitting seawater temperature at the sea surface every 30 minutes. Short term variation of seawater temperature, less than one day, in Gijang from June to July 2009 corresponded tidal period of about 12 hours and long term variation seemed to be caused by cold water southeast coast of Korea, particularly northeast of Gijang. Seawater temperature differences between Gijang station and the other station that is about 500 m away from Gijang station were 1 ℃ on average. This fact indicates that it is need to be pay attention to use substitute data even if it is close to the station. Daily range of seawater temperature, one of crucial information to aquaculture, can be obtained from this system because temperature were measured every 30 minutes. Averages of daily range of temperature off Gijang and Yeongdeok during each observation periods were about 2.9 ℃ and 4.7 ℃ respectively. Dominant period of seawater temperature variation off Yeongdeok was one day with the lowest peak at 5 a.m. and the highest one at 5 p.m. generally, resulting from solar radiation.