The 1/5 scale–down model of the Bycatch Reduction Device (BRD) from an Argentinean demersal trawl was tested in a circulating water channel. The BRD is designed to help small Hake (merluza, merluccius hubbsi) to escape from a trawl. It is settled in front of a trawl codend, and is equipped with selection grids that help small fish to escape from the gear and guiding panels that help fish to meet with the grids. Bars of the grids are wires covered by the PVC and other parts of the BRD are made of net. When the velocity was less than 0.65 m/sec (2.81 Kont when translated to real towing speed) which is slow speed compared with real towing speed, position between an upper guiding panel and an upper selection grid were good to help small fish to escape. When the velocity was more than 0.8 m/sec (3.41 Knot when translated to real towing speed) which is similar to and faster than real towing speed, it was considered that small fish may have difficulties in escaping because the gap was not enough between an upper guiding panel and an upper selection grid. The lower selection grid was sat on the bottom of the tank without an angle due to the weight that it carries. Improvements were proposed to position the panels and the grids better.
The excessive concentration of phosphorus in the river and reservoir is a deteriorating factor for the eutrophication. The converter slag was used to remove the phosphate from the synthetic wastewater. Influencing factors were studied to remove soluble orthophosphate with the different particle sizes through the batch and the column experiments by continuous flow. Freundlich and Langmuir adsorption isotherm constants were obtained from batch experiments with PSA and PSB. Freundlich isotherm was fitted better than Langmuir isotherm. Regression coefficient of Freundlich isotherm was 0.95 for PSA and 0.92 for PSB, respectively. The adsorption kinetics from the batch experiment were revealed that bigger size of convert slag, PSA can be applied for the higher than 3.5 mg/L of phosphate concentration. The pilot plant of continuous flow was applied in order to evaluate the pH variation, breakthrough points and breakthrough adsorption capacity of phosphate. The variation of pH was decreased through the experimental hours. The breakthrough time was 1,432 and 312 hours to 10 mg/L and 50 mg/L for the influent concentration, respectively. The breakthrough adsorption capacity was 3.54 g/kg for 10 mg/L, and 1.72 g/kg for 50 mg/L as influent phosphate concentration.
Longshore current is main transportation mean causing movement of bed load and suspended particle in coastal waters, and effective measurement method and suitable equipment for shallow water coastal environment where is frequently exposed to atmosphere. Measurement equipment for longshore drift was designed and miniature model was applied to Gyeongpo beach in May and June, 2014. The equipment consists of three main elements, spheroid outer casing, spheroid inner casing, observation module equipped with GPS. Gyroscope principle was applied to observation module, and GPS receiver always can be directed upwards. Miniature models were installed along Gyeonpo beach, and it was well to track the flow of longshore current. This research described the design and function of the equipment and results of field experiments.