검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Waterborne infectious disease is induced by several pathogenic microbes such as bacteria, viruses and protozoans, and the cases caused by viral infection is currently increasing. Water treatment process could reduce the number of virus in the water, but there were many difficulties to completely remove the virus particles from water. Therefore, the membrane separation technology which was reported to effectively remove pollutants from raw water has attracted increasing attention and demand. Since its efficiency has been introduced, demands for evaluation method toward the membrane filtration process are increasing. However, progression of the method development is slow due to the difficulties in cultivation of several waterborne viruses from animal models or cell culture system. To overcome the difficulties, we used adenovirus, one of the commonly isolated pathogenic waterborne viruses which can grow in cell culture system in vitro. The adenovirus used in this study was identified as human adenovirus C strain. The adenovirus was spiked in the raw water and passed through the microfiltration membrane produced by Econity, a Korean membrane company, and then the viral removal rate was evaluated by real-time PCR. In the results, the amount of virus in the filtered water was decreased approximately by 5 log scale. Because coagulant treatment has been known to reduce filtering function of the membrane by inducing fouling, we also investigated whether there was any interference of coagulant. In the results, we confirmed that coagulant treatment did not show significant interference on microfiltration membrane. In this study, we found that waterborne virus can be effectively removed by membrane filtration system. In particular, here we also suggest that real-time PCR method can rapidly, sensitively and quantitatively evaluate the removal rate of virus. These results may provide a standard method to qualifying membrane filtration processes.
        4,000원