검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this study is to find the optimal production process in the aluminum IMS core parts. To reduce the production process, the total stage was designed at a total of 2 stages and 3 stages. In the total 2 stages process, the production stage was divided into a shaft part production and a yoke part production. In the total 3 stages process, the yoke production stages were subdivided into the 2 stages for distributing the stress. The results were compared and analyzed in terms of effective stress, folding characteristics and load characteristics. The stress distributions according to the production total stages were almost the same, the yoke production stage was received high stress due to the high strain. Both the tubular shaft yoke and solid shaft yoke according to the production total stages did not have any problems in the production because there did not occur the folding, metal flow and under-fill. When the total 2 stages were employed, the load for producing the tubular shaft yoke and the solid shaft yoke was decreased by 35.0% and 27.1%, respectively. As the results, when the total 2 stages process is applied rather than 3 stages process, the product is produced quickly and it is expected to be advantageous for the production cost due to the low load.
        4,000원
        2.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this study is to optimize the diameter of tubular shaft yoke and solid shaft yoke, which are the core components of Al IMS for xEV. The processes of both products were designed totally 6 steps to manufactured the shaft part and the yoke part. The diameter of solid shaft yoke and tubular shaft yoke were changed from 20mm to 25mm and from 30mm to 35mm, respectively. Al 6082 was applied to the material of both products. The friction condition between die and material was employed Oil_Cold (Aluminum) with reference to the library in the program. The results were analyzed and compared in terms of effective stress, effective strain, and nodal velocity characteristics. The effective strain value for manufacturing the yoke part was higher than the shaft part because its part has a complex geometry. The value of nodal velocity was also higher with high effective strain region. However, in 6 stage process of tubular shaft yoke, although it had the high effective strain value, the nodal velocity value was the lowest due to the piercing process. The effect of shaft part diameter on effective stress in the tubular shaft was difficult to observe, however, in the solid shaft yoke, when the shaft part of one increased, the effective stress value was increased due to the larger yoke size.
        4,000원
        3.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this numerical study is to investigate the effect of shaft part’s diameter on the load distribution, under-fill, and metal-flow line characteristics in tubular & solid shaft yoke of Al-IMS. The outer diameter of tubular shaft yoke was changed from 30mm to 35mm, and the shaft diameter of solid shaft yoke was varied from 20mm to 25mm. In this results, the required load for production was linearly increased with increasing the tubular shaft yoke outer diameter. In the solid shaft yoke, the loads for the shaft part extending process were almost constant by 10,000kg, however, the loads for generating the yoke process, which were needed a lot of strain, were increased by 4,000kg with increasing the diameter of shaft part. The under-fill regions according to diameter of the shaft part were not observed in both products, and the metal-flow lines were also straight without folding phenomena.
        4,000원
        4.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this numerical study is to investigate the effect of aluminium material on the weight reduction in tubular shaft yoke and solid shaft yoke. The tubular shaft and the solid shaft were designed by 6 stage processes and the results were analyzed by using a finite element analysis method. The coefficient of friction was set to Oil_cold as referred to the analysis library. It was found that the weight was reduced as 65% with applying the aluminium alloy due to lower density than carbon steel. Von-mises stress values of applying aluminium alloy to the tubular shaft yoke and solid shaft yoke were lower than those of carbon steel because of the low yield stress of aluminium alloy. The folding and underfill phenomenon were not observed on the aluminium alloy in tubular shaft yoke and solid shaft yoke. From these results, the weight reduction of products and the extend life of dies can be expected when aluminium alloy is applied.
        4,000원