In this research, an effective method for reducing the fibrillation of lyocell fibers, which are spun from a solution of cellulose in N-methyl morpholine-N-oxide(NMMO), through consecutive chemical treatments. Undried solution-spun cellulosic fiber was firstly treated with 10 to 30 wt% of multifunctional crosslinking agents, such as ethylene glycol poly(3-chloro-2-hydroxypropyl) ether, and then dipped into alkaline solution to introduce epoxy functions. Finally steam condition was applied to occur a chemical crosslinking in order to reduce the fibrillation on the surface of fibers. Fibrillation was also reduced significantly by adding extra Na2SO4 in NaOH solution. In addition, Antifibrilllated lyocell fibers show the slightly higher dyeability(4 %) to Cibacron Blue without serious reduction of mechanical properties.
Recently, a method of using blast furnace slag to reduce the amount of cement which generates a large amount of carbon dioxide during the manufacturing process has been studied. Blast furnace slag is a latent hydraulic property material and requires the use of alkali activator. However, alkali activator is expensive and have problems in use. Therefore, in this study, an alkali aqueous solution was used instead of an alkali activator. The alkaline aqueous solution used in this study was obtained by electrolysis of pure water and has strong alkalinity of pH12. As a result, we found that the use of alkali aqueous solution is effective in improving the reactivity of blast furnace slag.