In the automotive industry, the platinum titanium anodes (Pt/Ti anode) play a significant role in electroplating of chromium coating on the vehicle’s shock absorber piston rod. In this paper, the structure of Pt/Ti anode was designed to obtain high quality and save time for the electroplating process. The structure of anode was designed in 2D & 3D modeling and analyzed by CATIA and ABAQUS program, respectively. The structural modeling of the anode was analyzed and carried out using a finite element method (FEM) by applied various loads. The manufacture anodes were installed in an electroplating bath in order to test the efficiency of chromium coating on shock absorber piston rod and safety of anode structure. The results presented indicate that the structural analysis is safe after applied loads due to the allowable stress is higher than the maximum equivalent stress about 4 times, and the chromium coating test obtained high-efficiency results.
The shock absorber base assembly is one of the parts in the shock absorber equipment that controls the vehicle movement. It absorbs the shock and vibration to guarantee riding stability and comfort. It demands strength, reliability and strict airtightness