본 연구의 목적은 선상에서 열수광물 내 Au를 효과적으로 용출하기 위한 마이크로웨이브-차아염소 산 용출의 적용 가능성을 파악하는 것이다. 비교용출실험은 마이크로웨이브 질산용출의 유(T1)/무(T2)에 따른 Au 용출율의 영향을 확인하였다. 또한, 기계적 교반에 의한 전통적인 용출(T3)과 마이크로웨이브 용출에 따른 Au 용출율을 비교하였다. 마이크로웨이브 질산용출결과(고액비; 10%, 용출온도; 90oC, 용출시간; 20분), 금속의 용출율은 As>Pb>Cu>Fe>Zn 순으로 높게 나타났으며, 용출잔사 내 Au의 함량은 33.77 g/ton에서 60.02 g/ ton으로 증가하였다. 염화물 용매제를 이용한 비교용출실험 결과, Au의 용출율은 T1(61.10%)>T3(53.30%) >T2(17.30%)순으로 높게 나타났다. 따라서, 해수를 이용하여 제조 가능하고 용출과정에서 발생되는 염소 가스를 포집하여 재이용 가능한 염화물은 Au용출을 위한 최적의 용매제로 예상된다. 또한 마이크로웨이브를 적용함으로써 시간, 효율 및 에너지 측면에서 효과적일 것으로 판단되어진다.
흔히 발견되지 않는 광물상들이 후기 열수변질광물로서 거도광산에서 관찰된다. 열수광물들은 스카른 광물들을 열수변질시키거나 공간충진 정출작용으로 산출된다. 즉, 투휘석, 석류석 및 장석들을 교대하여 녹니석과 포도석, 일라이트 및 펌펠리아이트 등을 산출하거나 열극이나 정동에서 정출한 것으로 포도석, 펌펠리아이트, 클리노조이사이트, 일라이트 및 Ca-불석(스틸바이트와 스텔러라이트) 등이 있다. 이들 열수광물들에 대해 X-선 회절분석, 주사전자현미경 관찰 및 전자현미분석을 통해 광물상과 산출상태 등이 상세히 규명되었다. 후기 공간충진 열수광물들을 대상으로 슈라이네마크 작도법에 의한 상평형 관계를 규명하였으며, 등온-등압 μH2O-μCO2상평형도를 작도하였다. 그 결과 초기에 정출된 포도석, 펌펠리아이트, 클리노조이사이트, 일라이트 및 녹니석은 비교적높은 CO2분압과 낮은 H2O 분압 하에서 먼저 정출되었으며, 그 후 H2O 분압이 증가하면서 일라이트와 수반되어 스틸바이트와 방해석이 정출되었다.
We present characteristics of hydrothermal chlorite and its interstratification with 7-a mineral phase that occur in the propylitic alteration zone of the Bobae sericite deposit formed in rhyodacitic tuff. Chlorite is found as disseminated fine-grained aggregate or replacement materials of precursor minerals such as Fe-oxides and amphibole. Based on X-ray diffraction(XRD), all chlorites belong to IIb polytype and the (060) reflections averaging 1.53~1.54a indicate a trioctahedral structure. Chemical compositions of chlorite show that the Fe/(Fe+Mg) values are mostly in the range of 0.44~0.53, and cation deficiencies in octahedral sites range from 0.06 to 0.37. Under scanning electron microscope(SEM) chlorite occurs as well-crystallized aggregates and is subparallely stacked in interstices or between grain boundaries of associated minerals. transmission electron microscopic(TEM) images reveal that chlorite shows regular layers with 14-a spacings, locally interstratified with 7-a or 21-a periodicities. The 21- a periodicity corresponds to the sum of the d001 values of chlorite and 7-a phase. The chlorite packet coexisting with 7-a layers displays abundant defects such as edge dislocations and layer terminations. Selected-area electron diffraction(SAED) indicates that chlorite and 7-a phase are randomly interstratified in the mixed-layer areas. We propose a lateral change of layers for the polymorphic transition of 7-a phase to chlorite.e.
황철석의 산화에 의한 토양 및 지표수의 산성화는 심각한 환경문제를 야기하여 왔다. 특이산 성토의 이차광물과 화학적 특징은 풍화과정을 반영하고 있다. 택지 및 골프장 조성과정에서 지표에 노출된 11.8% 황철석을 함유한 열수변질 안산암의 풍화에 따른 광물학적 변화를 X-선 회절, 전자현미경 (SEM, TEM), 배수의 화학분석을 통하여 연구하였다 수용성 염, ferrihydrite, jarosite가 풍화과정의 이차 광물로서 관찰되었다. 전자현미경하에서, ferrihydrite는 미세입자들의 입단, jarosite는 판상, 수용성 염은 기둥모양을 나타내었다. 안산암 내에 존재하는 황철석은 입자의 크기가 증가할수록 정육면체 형태/육각기둥 형태의 비가 증가하였다. 배수는 강산성 (pH 3.5) 이었으며 ferrihydrite, jarosite와 화학적 평형을 이루고 있었다.
김해지역의 덕봉납석광상은 모암이 안산암질응회암과 안산암으로 구성된 백악기말기의 화산암류가 열수변질작용을 받아서 형성되었으며, 딕카이트와 엽납석이 주구성광물이다. 이 연구에서는 산출하는 광물의 특성과 모암의 열수변질작용을 규명하고, 광물과 열수용액 간의 반응관계를 통하여 광상의 성인을 밝히고자 한다. 암석 내의 화학적 특성을 보면 열수변질작용동안 알칼리원소와 실리카는 유동성을 보이나 알루미나는 비교적 유동성이 작다. 모암으로부터 실리카의 용탈과 알루미나의 부화로 인하여 납석광체가 형성되고, 외곽부로 이동된 실리카의 재침전이 규화대를 생성시켰음을 볼 수 있다. 딕카이트와 엽납석과 밀접히 수반되는 다량의 미정질의 석영은 실리카의 활동도가 증가함에 따라서 형성된 것으로 해석된다. Argillic 변질대에서는 열수용액의 실리카의 용해도가 증가하였고, 규화대에서는 온도와 pH가 저하되면서 그 용해도가 저하되었다. Argillic 변질대로부터 빠져나간 Si는 광상의 가장자리에 침전하여 규화대를 형성시켰다. 딕카이트가 다양한 범위의 결정도를 보여주는 것은 계내의 부분적인 상안정성의 변화를 시사한다. 이 연구에서 계산된 열역학 값에 따르면, Al2O3-SiO2-H2O 계에서 엽납석-딕카이트 (카오리나이트)-다이아스포아-석영이 500 바에서 공존가능한 온도는 약 300 ℃이다. 광물조합과 기존실헙자료를 종합하면 주요 열수변질 시기의 온도는 최소한 270-300 ℃이며 XCO2는 0.025 미만으로 추정된다. 광물의 산상과 화학적 변화양상에 따르면 Al의 활동도는 광상의 상부에, 그리고 Si의 활동도는 하부와 연변부에서 높음을 보여준다. 덕봉광상에서 흔히 관찰되는 비평형 상관계는 열역학적 변수와 용액운반특성의 국부적인 변화로 인하여 화학적으로 비평형인 상들이 여러 단계에 걸쳐 형성되었음을 지시한다.
경남 밀양 일대의 화산암에는 열수변질대가 상당히 넓게 발달하고 있으며, 여러 개의 점토광상이 분포한다. 납석광상은 주로 안산암질 응회암에서 배태된다. 납석광석의 주구성광물은 엽납석과 딕카이트이며, 그외에 일라이트, 토수다이트, 듀모티에라이트, 석영 등의 규산염광물들이 소량 수반되며, 디이아스포아, 황철석, 웨이브라이트 등이 산출된다. 본 지역의 엽잡석은 단지 2M 다형만 산출된다. 엽납석은 약 750˚C에서 OH가 빠져나감에 따라서 d001 간격이 증간한다. 할로이사이트는 튜브형태로 나타난다. 웨이브라이트는 열수변질작용 말기의 낮은 온도에서 틈을 따라 침천된 것이다. 본 지역의 5개의 변질대로 구분되는데, 주광체로부터 멀어질수록 엽납석-딕카이트대, 실리카대, 일라이트대, 할로이사이트대, 녹니석-알바이트대로 대상분포를 보인다. 점토광물은 모암으로부터 Si와 알카리이온의 용탈에 의해서 형성되었다. 광물조합과 엽납석 다형 및 기존의 열역학적 자료를 밀양광산의 형성온도는 270∼350˚C 내외인 것으로 추정된다.