검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we present a sewer pipe inspection technique through a combination of active sonar technology and deep learning algorithms. It is difficult to inspect pipes containing water using conventional CCTV inspection methods, and there are various limitations, so a new approach is needed. In this paper, we introduce a inspection method using active sonar, and apply an auto encoder deep learning model to process sonar data to distinguish between normal and abnormal pipelines. This model underwent training on sonar data from a controlled environment under the assumption of normal pipeline conditions and utilized anomaly detection techniques to identify deviations from established standards. This approach presents a new perspective in pipeline inspection, promising to reduce the time and resources required for sewer system management and to enhance the reliability of pipeline inspections.
        4,200원
        4.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently there was an incident that military radars, coastal CCTVs and other surveillance equipment captured a small rubber boat smuggling a group of illegal immigrants into South Korea, but guards on duty failed to notice it until after they reached the shore and fled. After that, the detection of such vessels before it reach to the Korean shore has emerged as an important issue to be solved. In the fields of marine navigation, Automatic Identification System (AIS) is widely equipped in vessels, and the vessels incessantly transmits its position information. In this paper, we propose a method of automatically identifying abnormally behaving vessels with AIS using convolutional autoencoder (CAE). Vessel anomaly detection can be referred to as the process of detecting its trajectory that significantly deviated from the majority of the trajectories. In this method, the normal vessel trajectory is gridded as an image, and CAE are trained with images from historical normal vessel trajectories to reconstruct the input image. Features of normal trajectories are captured into weights in CAE. As a result, images of the trajectories of abnormal behaving vessels are poorly reconstructed and end up with large reconstruction errors. We show how correctly the model detects simulated abnormal trajectories shifted a few pixel from normal trajectories. Since the proposed model identifies abnormally behaving ships using actual AIS data, it is expected to contribute to the strengthening of security level when it is applied to various maritime surveillance systems.
        4,000원
        5.
        2020.10 구독 인증기관·개인회원 무료
        In this paper, we proposed an auto-encoder model of observation-wise linear transformation to reduce the dimensionality of data. While nonlinear models can reduce the dimensionality more effectively than linear models, such as the principal component analysis, the non-linear methods can hardly provide a simple linear relationship between the original and the dimensionally reduced data. The proposed model overcomes this difficulty while maintaining the effectiveness of the dimensionality reduction. We assessed the proposed model and compared with PCA and a typical auto-encoder model in terms of the loss function and the degree of reconstruction of the original data. By applying the proposed method to a public data of MNIST and Fashion-MNIST, we showed the effectiveness in the dimensionality reduction and relationship between the original data to the reduced data.