A heat exchanger refers to a pressure vessel that indirectly exchanges heat between low-temperature/ high-temperature fluids with a solid wall interposed therebetween, and a shell-and-tube cylindrical heat exchanger is generally applied. The shell-and-tube cylindrical heat exchanger is widely used in ships and there is a problem in that the welding area is narrow and welding defects occur a lot due to high-level welding. In particular, in the case of a ship heat exchanger, if a problem occurs in the welding part during operation, the possibility of a safety accident is high, and repair is not easy. In this study, to solve this problem, the GTAW(Gas Tungsten Arc Welding) method was applied to secure the optimum conditions for pipe welding of STS304 material with a thickness of 5.5mm and to conduct a test. Afterwards, in accordance with the ASME rules, welding performance was verified through cross-sectional observation of welds, mechanical property tests, (tensile strength, bending strength, cryogenic impact strength) and non-destructive testing(PT, RT).
본 연구의 대상은 1-2W 기본형 온실의 기둥을 절단하여 동일한 규격의 파이프로 용접하여 온실의 측 고를 높인 온실이다. 이와 같이 개조형 온실에 풍하중이나 적설하중이 작용할 경우, 어떠한 형태로든 용 접부위에는 구조적으로 불안전 할 것으로 판단된다. 이를 검토학기 위하여 4단계에 걸쳐 용접된 기둥에 대한 굽힘 강도를 측정하여 용접하지 않은 원상태의 파이프와 비교 검토한 결과는 다음과 같다. 온실구조용 강관에 대한 용접결합부의 굽힘 시험의 경우, 하중재하 방법에 관계없이 양단 지점부위와 하중 재하부위가 하중을 견디지 못하고 함몰되는 현상을 보임으로서 합리적인 결과를 도출할 수가 없었 다. 따라서 지점 및 하중 재하부위에 내부 파이프 (봉강)을 삽입함으로서 부분적인 문제점을 보완할 수 있었지만, 보다 합리적인 굽힘 시험 방법이 고안되어야 할 것으로 판단되었다. 용접결합부의 강도는 원형 상태에 비해 별 차이를 보이지 않았고, 시료의 제작 조건에 따라 경미한 차이를 보였으나, 용접 과정에서 부실의 정도가 결정적인 강도 손실을 유발할 수 있음이 예상되었다. 용접결합과정의 문제점이나 접합 작 업 후, 기둥 부재의 기울어짐 등에 대한 문제점이 없다는 전제 하에 용접한 파이프의 강도는 일반적으로 원형상태의 강도에 비해 약 84~90% 정도로 가정함이 합리적일 것으로 판단되었다. 그리고 접합부의 녹 발생이나 기타 용접결합에 따른 중장기적 강도 저하 등을 고려할 때, 부득이한 경우가 아니라면 현재 농 가에서 시도되고 있는 온실의 주요 부재에 대한 구조변경 등은 구조안전성 측면에서 지극히 삼가 되어야 할 것으로 판단되었다.