This study investigates the stress-strain relations of internally confined hollow concrete filled tube pier reinforced with GFRP tube by uniaxial compression test. The confined concrete subjected multi-axial stresses have been known as the strength of concrete increases significantly. Many researchers have studied in confining effects of CFT which have only outer GFRP tube. In this study, specimens reinforced with outer and inner GFRP tube were tested by uniaxial compression test. To investigate the influence of concrete strength increase by confining conditions in GFRP tube, 13 specimens with different thickness of tube, hollowness ratio and nominal concrete strength were tested and compared with Steel tube.
A stress-strain relationship for reinforced concrete membrane elements subjected to reversed cyclic loading is quite different to that of concrete cylinder subjected to uniaxial compression. The compressive strength of cracked concrete membrane elements is reduced by cracking due to tension in the perpendicular direction. Based on the three reinforced concrete panel tests, a softened stress-strain curve of concrete subjected to reversed cyclic loading is proposed. The proposed model consists of seven stages in the compressive zones and six stages in the tensile zones. The proposed model is verified by comparing to the test results.
To evaluate the stress-strain relationship of HVFA(High Volume Fly Ash) concrete, experiments were performed according to the ratio of fly ash usage and concrete compressive strength. Test results were shown that elasticity modulus of HVFAC was influenced by compressive strength, elasticity modulus and fly ash usage ratio. And the existing equation of stress-strain relationship had a large difference. So, new equation of stress-strain relationship for HVFAC was proposed, and the proposed results had a good correlation with test results