Motorcycles are becoming a major means of transportation in the delivery industry because of their mobility and economic feasibility, and their use is increasing with the spread of non-face-to-face culture. However, owing to the absence of a systematic maintenance and inspection system, illegal modifications, and a lack of safety education, the possibility of accidents is increasing, and social problems are intensifying. To address this issue, we aim to find ways to improve motorcycle safety. Problems were identified by registering motorcycles, driver crashes, and surveys of the current status of laws and systems. Subsequently, a questionnaire was administered to assess the actual conditions and perceptions regarding motorcycles. Finally, to analyze the driving characteristics of delivery motorcycles, traffic safety education was conducted for new delivery riders, and the driving characteristics were analyzed by collecting driving record data. In this study, a plan to enhance the license system, education, insurance, and educational programs is proposed to strengthen motorcycle safety. The licensing system needs to be elevated by age and classified by displacement, and delivery riders can improve their driving skills through mandatory traffic safety education. The insurance sector should introduce a system that discounts insurance premiums upon completion of training. Additionally, it is essential to prepare a systematic education program, including obstacle avoidance and simulation-based learning, by reflecting on the analysis results of road environments and driving data. In this study, insensitivity to safety, insufficient management systems, and lack of education and publicity were identified as causes of motorcycle driver crashes. It was confirmed that most types of dangerous driving were improved through traffic safety education. However, some limitations were observed, such as an increase in the right-hand rotation over time during sudden turns. Future research is needed to enhance laws, systems, and driver safety by analyzing driving characteristics in a broader context based on actual driving records and images.
The objective of this study is to develope the inspection standards and methods of motorcycle based on the Korean Motor Vehicle Safety Standards (KMVSS), the Korean Motor Vehicle Inspection Standards (KMVI), the inspection standards of the International Motor Vehicle Inspection Committee (CITA), United Kingdom, United State of America and Japan. 20 items related with motorcycle safety are suggested to inspect. Brake performance, headlight lamp, and speed are suggested to measure by a mechanical devices while the rest of items to inspect visually. The inspection with the suggested methods for 138 various models of runs are conducted for verifying the adaptability of present inspection standards. 88.4%, 54%, and 100% of runs satisfy the inspection criteria of the brake performance, lamp, and speedometer, respectively. Inspection time is expected to be about 10 to 16 minutes.
The objective of this study is to construct the inspection standards of motorcycle brake system performance. Based on the Korean Motor Vehicle Safety Standards (KMVSS), the Korean Motor Vehicle Inspection Standards (KMVI), the inspection standards of the International Motor Vehicle Inspection Committee (CITA), United Kingdom and Japan, three alternative brake performance criteria were suggested. The brake performance tests for 129 various models of used motorcycles were conducted for verifying the developed test equipment and suggested three alternative criteria. The total brake performance criterion is appropriately suggested to set at 50 %. Considering the KMVI or the CITA, the brake performance criterion of rear axle may suggested to set at 20 % or 25 %, either.
PURPOSES : This study is to analyze expected effect of a accident decrease when motorcycle safety inspection is introduced. METHODS : Based on the literature review of effect of 4-wheel vehicle inspection, probability of occurring accidents among defective motorcycles are calculated by using the number of estimated defective motorcycles and accidents resulting from defects of motorcycles. Then, the number of decreased accidents which is resulting from eliminating defects of motorcycles by safety inspection is estimated by using probability of occurring accidents among defective motorcycles. RESULTS : If the ratio of eliminating defects of motorcycles is 95% after motorcycle safety inspection, the effects of accident decrease of motorcycle safety inspection are analyzed from 2005 to 2008. As a result, 46,292 defective motorcycles are repaired and 1,376 accidents are prevented when the probability of occurring accidents among defective motorcycles is 2.97%. CONCLUSIONS : This study suggests the expected effect of motorcycle safety inspection is that the inspection can prevent 1,376 motorcycle accidents. However, the number of preventing motorcycle accidents are small, compared with the total number of motorcycle accidents because there are limitations to investigate the causes of defective motorcycle accidents. A more precise analysis of the expected effect of motorcycle inspection is possible when a systematic investigation of the causes of the accidents is implemented.
This paper presents the development and control of a two wheeled car-like mobile robot using balancing mechanism whose heading control is done by turning the handle. The mobile inverted pendulum is a combined system of a mobile robot and an inverted pendulum system. A sensor fusion technique of low cost sensors such as a gyro sensor and a tilt sensor to measure the balancing angle of the inverted pendulum robot system accurately is implemented. Experimental studies of the trajectory following control task has been conducted by command of steering wheel while balancing.