A bond-based peridynamic model has been reported dynamic fracture characteristic of brittle materials through a simple constitutive model. In the model, each bond is assumed to be a simple spring operating independently. As a result, this simple bond interaction modeling restricts the material behavior having a fixed Poisson’s ratio of 1/4 and not being capable of expressing shear deformation. We consider a state-based peridynamics as a generalized peridynamic model. Constitutive models in the state-based peridynamics are corresponding to those in continuum theory. In state-based peridynamics, thus, the response of a material particle depends collectively on deformation of all bonds connected to other particles. So, a state-based peridynamic theory can represent the volume and shear changes of the material. In this paper, the perfect plasticity is considered to express plastic deformation of material by the state-based peridynamic constitutive model with perfect plastic flow rule. The elastic-plastic behavior of the material is verified through the stress-strain curves of the flat plate example. Furthermore, we simulate the high-speed impact on 3D granite model with a nonlocal contact modeling. It is observed that the damage patterns obtained by peridynamics are similar to experimental observations.
본 논문에서는 다중적층 유리의 고속 충돌체에 의한 충돌/침투 파괴 현상을 해석하기 위해 페리다이나믹 동적 해석 기법을 적용한다. 대부분의 다중적층 유리 구조물들은 다수의 주요 유리층들이 상대적으로 매우 얇은 탄성 필름으로 접착되어서 만들어진다. 따라서 다중적층 구조물의 수치해석 모델을 구성하는 것은 까다롭고 비용이 많이 든다. 본 연구에서는 실제 절점을 대신하여 가상의 절점들을 주요층들 사이에 위치시키고 상호작용시키는 비국부 가상 층간구조 모델링을 도입하여 보다 효율적으로 다중적층 구조를 모델링하였다. 또한 고속 충돌체와의 충돌 및 침투 현상을 해석하기 위해 페리다이나믹 비국부 접촉 모델이 고려되었다. 7개의 유리층과 하나의 탄성 백킹층이 폴리비닐부티랄 필름으로 부착된 다중적층 유리의 충돌 파괴 해석을 통해 제안된 해석 모델의 손상 파괴 적용 가능성을 확인하였다
In this paper, a commercial multibody dynamics program ADAMS was utilized to investigate the model for the multi-joint boom conflicts. In this process, CATIA, ANSYS and ADAMS were used to develop the simulation. The addition of ADAMS made the system more accurate and improved precision of the system. In brief, the 3D CAD model of the structure was initially developed via CATIA. After this, the CATIA models were exported to ANSYS for creating flexible-body modeling by using formatted file. Subsequently, with ADAMS, the flexible body model was directly imported from ANSYS which performed the analyses of the dynamic collision of the nozzle boom conflicts. This contained the information regarding geometry and model shapes of the flexible body. Using ADAMS/Durability, it was possible to determine the strain energy for the nozzle configuration by crashing the contact structure that was created. Via this procedure, the acquired simulation analysis of nozzle showed interestingly good results with respect to the objectives of the study
본 연구에서는 반구형과 평탄형의 비상체를 이용하여 일반콘크리트와 섬유보강콘크리트에 충격시험을 진행한 후 파괴깊이와 형 태, 파괴직경, 배면의 인장변형을 평가하였다. 선단면적이 작을수록 충격력의 집중에 의해 파괴깊이는 크고 표면파괴 직경은 작게 되는 것으로 확인되었다. 반면에 선단면적이 클수록 파괴깊이는 작지만 표면파괴직경은 크게 되었다. 일반콘크리트와 섬유보강 콘크리트에서 유사한 표 면파괴와 배면변형이 발생하였으나 인장변형의 크기는 일반콘크리트에 비해 섬유보강 콘크리트가 작은 것으로 나타났다. 또한, 비상체의 선 단형상에 따른 표면관입의 형태와 배면의 인장변형 사이에 직접적인 연관이 있는 것으로 사료된다. 따라서 콘크리트의 배면박리한계두께 예 측 시에는 표면관입깊이뿐만 아니라 배면의 변형거동 또한 고려할 필요성이 있을 것으로 사료된다.
본 연구는 폴리비닐 알코올 섬유 및 강섬유를 체적비율로 1.5% 혼입한 고인성 섬유보강 시멘트복합체에 대한 비상체의 고속충돌시험을 실시하고, 충돌조건에 따른 파괴특성을 실험적으로 검토하는 것을 목적으로 하였다. 비상체의 충돌에 의한 고인성 섬유보강 시멘트복합체의 파괴특성을 평가하기 위하여 화약압력식 충격시험장치를 활용하였으며, 충돌속도의 범위는 약 150 ~ 1,000m/s로 설정하였다. 파괴특성에 대한 평가결과, 고인성 섬유보강 시멘트복합체는 섬유를 혼입하지 않은 Plain시험체의 약 3배 이상의 비상체 운동에너지가 작용하는 범위에서도 표면관입의 파괴등급으로 평가되었으며, 시험체가 파단되지 않는 내충격성능이 확인 되었다. 또한, 충돌시험 전후에 대한 시험체의 질량감소율의 경우, Plain시험체는 비상체의 운동에너지의 증가율과 비례적인 관계를 보였지만, 고인성 섬유보강 시멘트복합체는 비상체의 운동에너지의 영향을 크게 받지 않는 것으로 나타났다. 특히, 이와 같은 경향은 시험체 배면의 파괴특성과 밀접한 관계를 가지며, S시험체에 비해 PVA시험체의 배면박리 억제효율이 큰 것으로 평가되었다. 한편, 국부손상에 대한 표면관입깊이 및 배면박리깊이의 관계를 검토한 결과, 고인성 섬유보강 시멘트복합체는 Plain과 달리 시험체 단면의 중앙선을 기준으로 배면에 가까운 영역에서 배면박리가 발생하는 것을 알 수 있었다. 본 연구를 통해 비상체의 충돌에 대한 고인성 섬유보강 시멘트복합체의 주요 파괴거동이 검토되었으며, Plain과 비교하여 내충격성능의 향상을 명확히 확인하였다.
Tensile stress and strain of rear by shock wave become the cause of rear side scabbing of concrete subjected to high-velocity impact. Improvement of flexural and tensile performance by fiber reinforcement has great effect on the suppression of the rear scabbing.
In this study, impact of high-velocity projectile by mixing steel fiber, polyamide, nylon, polyethylene fiber which have different shape and properties respectively. Scabbing is restrained because of micro-crack caused by the shock wave offset effect and energy dispersive of synthetic fibers are mixed populations.