A 2D axisymmetric numerical analysis was performed to study the characteristics of charge process inside solar thermal storage tank. The porosity and heat transfer coefficient of filler material as well as inlet velocity of heat transfer fluid are selected as simulation parameters. The porosity is varied as 0.2, 0.5, and 0.8 to account for the effect of filler granule geometry. Two levels of the heat transfer coefficient is adopted to assess the heat transfer between heat transfer fluid and filler material. The inlet velocity is varied as 0.00278, 0.0278, and 0.278m/s. As both of the porosity and the heat transfer coefficient increase, the discrepancy of the temperature distributions between the filler and heat transfer fluid decreases. As the inlet velocity increases, the penetration depth of the heat transfer fluid increases proportionally.
A 2D axisymmetric numerical analysis was performed to study the characteristics of charge process inside solar thermal storage tank. The interfacial area density and inertial resistance of filler material are selected as simulation parameters. The interfacial area density is varied as 800, 2000, and 4000 1/m. The inertial resistance is varied as 1, 3, and 5 1/m. When the interfacial area density increases from 800 to 4000 1/m, the discrepancy of the temperature distributions between the filler and heat transfer fluid decreases. As inertial resistance increases from 1 to 5, both of the temperature and fluid flow pattern changes considerably.
This study examined lateral load behaviors of partially grout filled steel tube from structural analysis. To evaluate structural resistant behaviors of partially grout filled steel tube, Nonlinear FE analysis model of partially grout filled steel tube was considered using ABAQUS program. From FE analysis results, grout filling effect and thickness effect of steel tube on the lateral load behaviors were compared.
The adsorption experiment of phenol(Ph) from aqueous solution on granular activated carbon was studied in order to design the fixed-bed adsorption column. The experimental data were analyzed by unsteady-state, one-dimensional heterogeneous model. Finite element method(FEM) was applied to analyze the sensitivity of parameter and to predict the fixed-bed adsorption column performance on operation variable changes. The prediction model showed similar effect to mass transfer and intraparticle diffusion coefficient changes suggesting that both parameter present mass transfer rate limits for GAC-phenol system. The Freundlich constants had a greater effect than kinetic parameters for the performance of fixedbed adsorption column. FEM solution facilitated prediction of concentration history in solution and within adsorbent particle.