전기 캐비닛은 병원 및 발전소와 같은 중요 시설물에서 운영과 관리를 위한 시스템 기기를 보관한 다. 지진과 같은 극한하중 하에서 중요 시설물은 지속적으로 운영 및 제어되어야 하기 때문에 전기 캐 비닛의 안전성은 평가되고 확보되어야 한다. 하지만 실험적 연구만으로 다양한 유형의 전기 캐비닛에 대한 내진성능 평가를 수행하는 것은 많은 제약이 있다. 따라서 다양한 연구자들은 전기 캐비닛의 유 한요소 모델을 구축하고 내진성능 평가를 수행하였다. 유한요소 모델은 beam-stick 요소를 기반으로 구축되거나 3차원 shell 요소를 기반으로 구축되어왔다. Beamk-stick 요소 기반 및 3차원 shell 요소 기반의 유한요소 모델에 대한 전체거동에 대한 비교를 수행한 사례는 있으나 국부거동에 대한 동적응 답을 비교한 연구사례는 없다. 전기 캐비닛은 내부에 시스템 기기가 보관되므로 내부의 국부거동 기반 의 내부응답을 포착할 수 있어야한다. 따라서 본 연구는 단문형 전기 캐비닛에 대한 beam-stick 요소 및 3차원 shell요소를 기반으로 유한요소 모델을 구축하고 동일한 높이에서 가속도 응답을 비교하였다. 결과적으로 beam-stick 요소 기반의 3차원 유한요소 모델은 전기 캐비닛 내부 응답 스펙트럼을 정확 히 예측할 수 없기 때문에 내부 응답 스펙트럼을 위해서는 3차원 shell요소 기반의 상세 유한요소 모 델을 사용해야 한다.
Seismic qualification of instruments and devices mounted on electrical cabinets in a nuclear power plant is performed in this study by means of the in-cabinet response spectrum (ICRS). A simple method and two rigorous methods are proposed in the EPRI NP-7146-SL guidelines for generating the ICRS. The simple method of EPRI can give unrealistic spectra that are excessively conservative in many cases. In the past, the time domain analysis (TDA) methods have been mostly used to analyze a structure. However, the TDA requires the generation of an artificial earthquake input motion compatible to the target response spectrum. The process of generating an artificial earthquake may involve a great deal of uncertainty. In addition, many time history analyses should be performed to increase the accuracy of the results. This study developed a numerical analysis program for generating the ICRS by frequency domain analysis (FDA) method. The developed program was validated by the numerical study. The ICRS calculated by FDA thoroughly matched with those obtained from TDA. This study then confirms that the method it proposes can simply and efficiently generate the ICRS compared to the time domain method.
Electrical instruments and devices contained in cabinets for controlling nuclear power plants require seismic qualification; likewise, in-cabinet response spectrum (ICRS) is necessary. Gupta et al. (1999) suggested the Ritz method, where rocking, frame bending, and plate bending behaviors of cabinets are considered, as a method for determining ICRS. This research proposes a method to determine the rocking stiffness of cabinets, which represents its rocking behavior. The cabinet is fixed on mounting frames and is connected to the base concrete by anchors. When horizontal excitation is applied to the cabinet, the mounting frames at anchors are locally deformed, the mounting frames are bent, and then rocking in the cabinet becomes evident. A method to determine equivalent vertical spring stiffness representing the local deformation of the mounting frames at anchors is then proposed. Subsequently, the rocking stiffness of this mounting frame is calculated upon assumption of the mounting frame as an indeterminate beam.
Safety-related cabinets and their electrical parts, such as relays and switches in nuclear power plants, should maintain continuous functioning, as well as structural safety according to the nuclear regulatory guidelines. Generally, an electrical part is qualified if its functioning is maintained without abnormality during excitement by motion compatible with the test response spectrum, which is larger than its in-cabinet response spectrum (ICRS). ICRS can be determined by shake-table test or dynamic analysis. Since existing cabinets in use can hardly be stopped and moved, dynamic analysis is preferred over shake-table test in determining ICRS. The simple method, suggested by the Electric Power Research Institute (EPRI) to determine ICRS, yields conservative or non-conservative results from time to time. In order to determine that the ICRS is better than EPRI method in a simple way, Ritz method considering global and local plate behaviors was suggested by Gupta et al. In this paper, the Ritz method is modified in order to consider the rocking and frame behaviors simultaneously, and it is applied to a simple numerical example for verification. ICRS is determined by Ritz method and compared with the results by finite element method (FEM). Based on this numerical example, recommendations for using Ritz method are suggested.