검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        There is increasing demand for the development of a new material with high strength, high stiffness, and good electrical conductivity that can be used for high-voltage direct current cables. In this study, we develop aluminumbased composites containing C60 fullerenes, carbon nanotubes, or graphene using a powder metallurgical route and evaluate their strength, stiffness, coefficient of thermal expansion, and electrical conductivity. By optimizing the process conditions, a material with a tensile strength of 800 MPa, an elastic modulus of 90 GPa, and an electrical conductivity of 40% IACS is obtained, which may replace iron-core cables. Furthermore, by designing the type and volume fraction of the reinforcement, a material with a tensile strength of 380 MPa, elastic modulus of 80 GPa, and electrical conductivity of 54% IACS is obtained, which may compete with AA 6201 aluminum alloys for use in all-aluminum conductor cables.
        4,000원
        2.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present study, we develop a conductive copper/carbon nanomaterial additive and investigate the effects of the morphologies of the carbon nanomaterials on the conductivities of composites containing the additive. The conductive additive is prepared by mechanically milling copper powder with carbon nanomaterials, namely, multi-walled carbon nanotubes (MWCNTs) and/or few-layer graphene (FLG). During the milling process, the carbon nanomaterials are partially embedded in the surfaces of the copper powder, such that electrically conductive pathways are formed when the powder is used in an epoxy-based composite. The conductivities of the composites increase with the volume of the carbon nanomaterial. For a constant volume of carbon nanomaterial, the FLG is observed to provide more conducting pathways than the MWCNTs, although the optimum conductivity is obtained when a mixture of FLG and MWCNTs is used.
        4,000원
        3.
        2017.05 구독 인증기관·개인회원 무료
        Thin-film nanocomposite (TFN) reverse osmosis (RO) membranes have drawn keen attention to overcome the limitations in polymeric desalination membranes. However, preparation of TFN-RO membranes using conventional protocol involves problems such as a waste of expensive nanomaterials and inaccurate control of loading amount. In this work, we suggest a new protocol of TFN-RO membranes through pre-adsorption of carbon nanotubes (CNTs) on the support layer using spray coating. SEM images of spray coated supports showed well-dispersed adsorption of CNTs compared with those using conventional method. RO performances of TFN membranes using spray coating were comparable to conventionally prepared membranes. Thus, this new protocol is useful to prepare TFN membranes in terms of cost-efficiency.
        5.
        2014.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recent studies have been reported the presence of Endocrine Disrupting Compounds, Pharmaceuticals and Personal Care Products (EDC/PPCPs) in surface and wastewater, which could potentially affect to the complicate behavior in coupled presence of nano-colloid particles and surfactants (adsorption, dispersion, and partitioning). In this study, the adsorption of EDC/PPCPs by Single Walled Carbon Nanotubes (SWNTs) as a representative of nano-particles in cationic surfactant solutions were investigated. Hydrophobic interactions (π-π Electron Donor-Acceptor) have been reported as a potential adsorption mechanisms for EDC/PPCPs onto SWNTs. Generally, the adsorptive capacity of the relatively hydrophobic EDC/PPCPs onto SWNTs decreased in the presence of cationic surfactant (Cetyltrimethyl Ammonium Bromide, CTAB). This study revealed that the competitive adsorption occurred between CTAB cations and EDC/PPCPs by occupying the available SWNT surface (CTAB adsorption onto SWNTs shows five-regime and maximum adsorption capacity of 370.4 mg/g by applying the BET isotherm). The adsorption capacity of 17α-ethinyl estradiol (EE2) on SWNT showed the decrease of 48% in the presence of CTAB. However, the adsorbed naproxen (NAP) surely increased by forming hemimicelles and resulted in a favorable media formation for NAP partition to increase SWNTs adsorption capacity. The adsorbed NAP increased from 24 to 82.9 mg/g after the interaction of CTAB with NAP. The competitive adsorption for EDC/PPCPs onto SWNTs is likely to be a key factor in the presence of cationic surfactant, however, NAP adsorption showed a slight competition through CH3-CH3 interaction by forming hemimicelles on SWNT surface.
        4,200원
        6.
        2012.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 연구에서는 친환경 선박용 재료로 각광받는 탄소나노물질에 대하여 실험적 연구를 수행하였다. 탄소나노물질의 합성을 위한 열원으로서는 대향류 메탄 화염을 이용하였다. 탄소나노물질 합성을 위한 촉매로서는 페로센을 사용하였다. 합성 특성을 파악하기 위한 주요 파라메타로는 대향류 메탄 화염에 수소의 혼합 비율과 샘플링 위치를 변화시켰다. 탄소나노물질의 성향은 SEM과 TEM 이미지를 이용하여 결정되었다. 실험 결과로서는 수소의 혼합 비율이 증가할수록 탄소나노물질의 생성이 잘 이루어졌다. 또한 대향류 메탄 확산화염 내 탄소나노튜브의 생성을 위한 적정 온도로는 1500 K 정도가 적당하다는 것을 알 수 있었다.
        4,000원