검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2025.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        노면결빙에 따른 전도사고 및 블랙아이스에 의한 사고 등이 증가하고 있으며 이를 해결하기 위한 발열 시멘트 복합체에 대한 관심이 증가하고 있다. 본 연구에서는 리튬이차전지 산업에서 발생되는 폐 CNT 폐 음극재 등 탄소계 산업부산물을 활용하여 고상탄소 캡슐을 제조 하고 이를 혼입하여 레미탈 및 모르타르 실험체를 제조하여 전기 인압에 따른 중심부 표면 온도 측정 및 열화상 카메라를 통하여 발열 성능을 평가하였다. 고상탄소캡슐 혼입량이 증가할수록 발열 성능이 우수하게 나타났으며 레미탈 실험체의 경우 DC 24 V에서 모든 실험체가 35분 내 표면온도 60℃ 이상 나타내었다. 모르타르 실험체의 경우 전기 인압 DC 24 V에서 고상탄소캡슐을 19% 이상 혼입 시 소요시간 30분 내 30℃ 이상의 발열 상승 목표를 만족하는 것으로 나타났다.
        4,000원
        2.
        2016.11 서비스 종료(열람 제한)
        최근 온실가스에 의한 지구온난화에 대한 국내외의 관심이 급증하여, 주요 선진국을 필두로 하여 국제적인 협약 체결을 맺어 온실가스를 감축하고자 노력하고 있다. 한국도 온실가스 저감 목표를 세우고 이를 달성하기 위해 다양한 분야에서 관련 기술을 개발하고 있다. 특히, 한국 온실가스 배출 분야에서 온실가스 감축 잠재력이 비교적 큰 것으로 알려진 콘크리트의 주재료인 시멘트에 의한 온실가스 저감 연구가 활발하게 진행되고 있으며, 이는 한국뿐만 아니라 국제적으로 공통적인 큰 관심 연구 분야이다. 시멘트의 1 ton 생산 시에는 주요 온실가스인 이산화탄소가 0.7~1.0 ton 배출되는 것으로 알려져 있으며, 이는 전체 이산화탄소 배출량의 7~8%를 차지한다. 따라서 콘크리트 제조 시에 시멘트를 대신하여 고로슬래그, 플라이애쉬 등의 산업부산물을 활용하여, 시멘트 사용량을 줄여서 이산화탄소 배출량을 저감하고자하는 연구가 활발하게 진행되고 있다. 본 연구에서는 산업부산물을 적용한 알칼리 활성 콘크리트의 탄소 흡수 및 물리역학적 특성을 확인하여 실제 시멘트 대체용으로 활용 가능성을 확보하고자 하였다. 콘크리트 제조 시에 첨가되는 시멘트를 고로슬래그 및 플라이애쉬로 대체함으로써, 시멘트 사용량 저감을 통해 간접적으로 이산화탄소의 배출을 줄이고, 활성화시킨 고로슬래그를 활용하여 직접적으로 이산화탄소를 포집하였다. 또한 양생조건에 따른 이산화탄소 흡수능 및 이산화탄소 흡수 전후의 화학적 특성을 확인하고자 20~80℃ 범위에서 양생한 시료의 이산화탄소 흡수 및 물리역학적 특성을 비교하였다. 탄소 포집용 알칼리 활성 콘크리트를 제작함에 앞서, 기초 실험을 통해 다양한 산업부산물 중에서 이산화탄소 활성화제 및 시멘트 대체용으로 동시에 활용 가능한 최적의 산업부산물로 고로슬래그를 선정하였다. 고로슬래그의 수경성 확보를 위해 수산화칼슘 및 규산나트륨을 활성화제로 사용하였다. 바인더와 활성화제, 증류수를 투입하여 혼합한 알칼리 흡수제는 질소 충진한 항온 챔버에서 24시간 동안 보관하였다. 20℃에서 양생한 시료의 이산화탄소 흡수량은 51.5 g-CO2/kg였으며, 40℃에서 양생할 때 이산화탄소 흡수량은 59.3g-CO2/kg으로 가장 높았으나, 60, 80℃에서 양생한 시료의 경우 CO2 흡수량이 20, 40℃에서 양생한 시료에 비해 낮았다. 압축강도를 측정한 결과도 이산화탄소 흡수 실험결과와 동일한 추세를 보였다. 이산화탄소 흡수 및 압축강도 실험결과들을 바탕으로, 본 연구에서 개발한 알칼리 활성 콘크리트는 이산화탄소 흡수제 기능을 갖는 건축재료로써 활용이 가능하며, 특히 40℃에서 양생 할 경우 알칼리 활성 콘크리트의 이산화탄소 흡수능이 극대화 될 것으로 판단된다.
        3.
        2013.11 서비스 종료(열람 제한)
        본 연구는 최근 관심이 높아지고 있는 이산화탄소의 처리방법 중 하나인 광물탄산화 기술에 관한 것으로 이산화탄소를 산업부산물인 Cement Kiln Dust(CKD)와 반응시켜 이산화탄소를 안정하게 저장하는 기술을 개발하는 것을 목표로 하였다. CKD로부터 Ca 성분을 용출한 후 이산화탄소를 연속흐름방식으로 주입하여 탄산화반응을 진행하였다. 연구결과는 다음과 같다. 1) 연구에 사용한 원료물질인 CKD의 총 함량분석을 실시한 결과, 탄산화반응에 효과적이라고 알려진 Ca 함량이 상당히 높고 다른 금속성분들은 미량 검출되었으며 As, Cd, Hg, Ni와 같은 중금속은 전혀 검출되지 않았다. 이는 CKD가 광물탄산화의 재료로 사용되기에 적합하고, 친환경적인 산업부산물임을 보여준다. 2) CKD로부터 Ca 용출효율을 높일 수 있는 최적의 용제는 hydrochloric acid, acetic acid, ammonium chloride, ammonium acetate, sodium citrate이었고, 최적 반응조건은 반응시간(30 min), 교반속도(250 rpm), 고액비(1:50), 용제농도(0.3 M)이었다. 3) 탄산화반응 후 생성된 탄산염의 질량을 근거로 이산화탄소 저장량을 계산하였다. Ammonium chloride 용제를 사용하여 만든 Ca 용출액 1 L에 이산화탄소 유량을 0.3 L/min으로 조절하여 연속적으로 주입하였을 때, 탄산화반응은 15분이내에 완료되었고 CKD 1 ton으로 380 kg의 이산화탄소를 저장할 수 있었다. 4) 탄산화반응이 완료된 후, ammonium chloride와 ammonium acetate 용제를 사용한 Ca 용출액에서 흰색염이 생성되었으며, XRD 분석결과 고순도의 탄산칼슘(Calcite)임을 확인하였다.