최근 수질 및 수문에 있어 도시화에 미치는 영향을 도시 지역 내 저영향개발 기법을 이용한 저감효율에 관하여 연구가 진행되고 있다. 하지만 저영향개발 기법의 정량적 효율성을 증명할 수 있는 방법이나 기준 설정과 관련한 논문은 전무한 실정이다. 이에 본 연구에서는 수문순환 체계를 재현 및 정량화할 수 있는 강우-유출 시뮬레이터를 개발하였고 실제 투수성 블록에 적용하였다. 이는 일반 블록과의 지표유출 및 중간유출 등 수문순환의 요소에 대하여 정량적으로 산정 및 비교함으로써 기기를 통한 투수성 블록의 효율성 분석을 실시하였다. 본 연구의 결과로 투수성 블록의 경우 강우강도가 크고 지속시간이 길어질수록 지표유출량의 저감효과를 뚜렷이 확인할 수 있었으며, 50 mm/hr의 강우강도로 1시간동안 분사하여도 지표 유출이 전혀 발생하지 않도록 제어할 수 있었다. 그리고 본 연구에서 사용한 기기의 강우검증 과정을 통해 결과의 신뢰성을 높이고 투수성 블록뿐만 아니라 여러 LID 요소 효율성 검증에도 활용할 수 있을 것으로 생각된다. 따라서 본 기기를 활용하여 저영향개발 요소기술별 유출의 저감효과 분석을 위한 효율성 검증의 표준화를 정립하는 기초 연구로 활용할 수 있다.
도시화로 인한 불투수층의 증가로 침수 및 범람의 피해가 매년 증가 하고 있는 실정이며, 서울시에서는 그 대안으로 새롭게 시공되는 도로의 경우 투수성 포장을 시공하도록 시행하였다. 이러한 투수성 포장재는 많은 연구로 다양하게 개발되어 왔지만 그 효율에 대한 정량적인 효율성 검증 및 평가 방법이 미비하다. 그리하여 본 연구는 강우모의 장치를 이용하여 투수성 블록의 강우 유출수 저감 효율을 일반 보도블록과 비교하여 평가 하였으며, 관측된 data를 이용하여 Holton의 침투모형에 의해 투수성 블록 시설의 침투모형을 산정하였다. 또한 SWMM모형의 LID Tool을 이용하여 관측값과 SWMM모형 계산 값을 시행착오법으로 보정 하여 투수성 블록의 매개변수를 산정하였다. 산정된 매개변수는 소규모 공업지역에 적용하여 문헌에서 제시한 자료와 비교하였다. 향후 LID 요소별 검증실험을 통한 매개변수를 산정한다면 모형을 통하여 간단하게 대상유역에 대하여 LID 요소기술 적용을 통한 강우유출수의 저감 효율을 산정할 수 있을 것으로 기대된다
This study aims to measure and to analyze the characteristics of thermal environment of the various permeable pavement materials such as a break stone pavement (Green block cubic), soil protection pavement (Soil tector), soil cement pavement and ceramic brick pavement under the summer outdoor environment. The thermal environment characteristics measured in the study includes the changes of surface temperature during the day, and long and short wave radiation of each pavement surface. The experimental condition is based on the data on the hottest temperature (August 9, 2006, 37.1℃) of the year. The albedo was the highest on the break stone pavement(0.8) from 12:00 to 14:00. The albedo of the ceramic brick pavement, a soil tector pavement and soil cement pavement were 0.35, 0.29 and 0.27 from 12:00 to 14:00, respectively. The peak surface temperature and long wave radiation was the highest on the soil protection pavements(56.6℃/627 W/m2). The peak surface temperatures and long wave radiation on the ceramic brick pavement, a stone brick pavement and soil cement pavement were 51.7℃/627 W/m2, 48.8℃/607 W/m2 and 45.9℃/582 W/m2, respectively. The heat environment was better on the break stone pavement than on the other pavements. This is mainly due to the high albedo of the break stone pavement(0.8) while the albedo value of a ceramic brick pavement, a soil tactor pavement and soil cement pavement were 0.35. 0.29 and 0.27. Large heat capacity(2,629 kJ/㎥․K) of the stone brick pavements also contributes to this difference. The heat environment was better on the soil cement pavement than the soil tector pavement. This is mainly due to the evaporation of the soil cement pavement while the active evaporation of the soil tactor pavement was not continued after two days from the rainfall event. To improve the thermal environments in the urban area, it is recommended to raise the albedo of the pavements by brightening the surface color of the pavement materials. Further studies on the pavement materials and the construction methods which can enhance the continuous evapotranspiration from the pavements surface are needed.