검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        2.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        사용자의 수요가 증가함으로 인하여 최근의 마커 기반 증강현실 기술은 제스처 기반 인간-컴퓨터 상호작용 분야에서 주목을 받고 있다. 그러나 개체가 프레임에서 빠른 움직임을 보일 때 발생하는 모션 블러 효과에 의하여 마커의 추적 및 감지의 한계점이 발생한다. 기존의 디블러링 기술들에서 전체 프레임 중 특정 프레임을 추출하는 작업이 없다면 실시간 비디오에서 사용하기에 문제가 있다. 본 논문에서는 인간-컴퓨터 상호작용을 위하여 ArUco 마커를 사용한 특징점 기반 광학흐름 추적 방법을 제안하며, 마커를 이용한 자세 추정 방법을 설명한다. 이 방법은 ArUco 마커를 감지하고 특수한 마커 추적 방법을 통해 마커 감지를 보완한다. 특히 마커 추적 방법은 FAST 알고리즘을 사용하여 특징점을 추출하고 루카스-카나데 방법을 사용하여 특징점의 움직임을 분석하여 움직임 벡터를 계산한다. 또한 Perspective-n-Point 문제를 해결하여 마커 포즈 추정을 구현했다. 제안된 시스템은 기존의 방법보다 높은 검출률을 보였으며, 마커를 포함한 비디오 에서 프레임 처리 속도가 약 37% 향상되었다. 또한 마커 포즈 추정을 그래픽으로 구현하였다. 이 연구는 실제 환경에서 카메라를 통한 제스처 기반 인간-컴퓨터 상호작용 분야와 또한 이동 로봇 분야에도 도움이 될 것이라 기대된다.
        4,000원
        4.
        1992.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Quantizing and extracting visual features of mushroom(Lentinus edodes L.) are crucial to the sorting and grading automation, the growth state measurement, and the dried performance indexing. A computer image processing system was utilized for the extraction and measurement of visual features of front and back sides of the mushroom. The image processing system is composed of the IBM PC compatible 386DK, ITEX PCVISION Plus frame grabber, B/W CCD camera, VGA color graphic monitor, and image output RGB monitor. In this paper, an automatic thresholding algorithm was developed to yield the segmented binary image representing skin states of the front and back sides. An eight directional Freeman's chain coding was modified to solve the edge disconnectivity by gradually expanding the mask size of 3×3 to 9×9. A real scaled geometric quantity of the object was directly extracted from the 8-directional chain element. The external shape of the mushroom was analyzed and converted to the quantitative feature patterns. Efficient algorithms for the extraction of the selected feature patterns and the recognition of the front and back side were developed. The developed algorithms were coded in a menu driven way using MSC language Ver.6.0, PC VISION PLUS library fuctions, and VGA graphic functions.
        4,800원
        5.
        2020.03 KCI 등재 서비스 종료(열람 제한)
        In this paper, we introduce the methodology that utilizes deep learning-based front-end to enhance underwater feature matching. Both optical camera and sonar are widely applicable sensors in underwater research, however, each sensor has its own weaknesses, such as light condition and turbidity for the optic camera, and noise for sonar. To overcome the problems, we proposed the opti-acoustic transformation method. Since feature detection in sonar image is challenging, we converted the sonar image to an optic style image. Maintaining the main contents in the sonar image, CNN-based style transfer method changed the style of the image that facilitates feature detection. Finally, we verified our result using cosine similarity comparison and feature matching against the original optic image.
        6.
        2019.12 KCI 등재 서비스 종료(열람 제한)
        In this paper, an Embedded solution for fast navigation and precise positioning of mobile robots by floor features is introduced. Most of navigation systems tend to require high-performance computing unit and high quality sensor data. They can produce high accuracy navigation systems but have limited application due to their high cost. The introduced navigation system is designed to be a low cost solution for a wide range of applications such as toys, mobile service robots and education. The key design idea of the system is a simple localization approach using line features of the floor and delayed localization strategy using topological map. It differs from typical navigation approaches which usually use Simultaneous Localization and Mapping (SLAM) technique with high latency localization. This navigation system is implemented on single board Raspberry Pi B+ computer which has 1.4 GHz processor and Redone mobile robot which has maximum speed of 1.1 m/s.
        7.
        2013.11 KCI 등재 서비스 종료(열람 제한)
        Facial feature extraction and tracking are essential steps in human-robot-interaction (HRI) field such as face recognition, gaze estimation, and emotion recognition. Active shape model (ASM) is one of the successful generative models that extract the facial features. However, applying only ASM is not adequate for modeling a face in actual applications, because positions of facial features are unstably extracted due to limitation of the number of iterations in the ASM fitting algorithm. The unaccurate positions of facial features decrease the performance of the emotion recognition. In this paper, we propose real-time facial feature extraction and tracking framework using ASM and LK optical flow for emotion recognition. LK optical flow is desirable to estimate time-varying geometric parameters in sequential face images. In addition, we introduce a straightforward method to avoid tracking failure caused by partial occlusions that can be a serious problem for tracking based algorithm. Emotion recognition experiments with k-NN and SVM classifier shows over 95% classification accuracy for three emotions: "joy", "anger", and "disgust".
        8.
        2011.08 KCI 등재 서비스 종료(열람 제한)
        This paper presents a localization system using ceiling images in a large indoor environment. For a system with low cost and complexity, we propose a single camera based system that utilizes ceiling images acquired from a camera installed to point upwards. For reliable operation, we propose a method using hybrid features which include natural landmarks in a natural scene and artificial landmarks observable in an infrared ray domain. Compared with previous works utilizing only infrared based features, our method reduces the required number of artificial features as we exploit both natural and artificial features. In addition, compared with previous works using only natural scene, our method has an advantage in the convergence speed and robustness as an observation of an artificial feature provides a crucial clue for robot pose estimation. In an experiment with challenging situations in a real environment, our method was performed impressively in terms of the robustness and accuracy. To our knowledge, our method is the first ceiling vision based localization method using features from both visible and infrared rays domains. Our system can be easily utilized with a variety of service robot applications in a large indoor environment.
        9.
        2011.04 KCI 등재 서비스 종료(열람 제한)
        본 논문에서는 동작인식 위한 정확한 배경 분할 및 특징점 추출 방법을 제안한다. 배경 분할 과정에서는 먼저, HSV 입력 이미지를 RGB 색상 공간에서 HSV 색상 공간으로 변환한 뒤, H와 S 값에 대한 두 개의 임계치를 사용하여 살색 영역을 분할, 프레임간의 차영상을 이용하여 움직임이 있는 영역을 추출한다. 차영상에서 발생하는 잔상 영역을 제거하기 위하여 헤시안 어파인 영역 검출기를 적용하고, 잡음이 제거된 차 영상과 살색 영역의 이진화 영상을 이용하여 사람의 동작이 나타나는 영역을 분할한다. 특징점 추출 과정은 전체 영상을 블록 단위로 나눠서 각 블록 안에서 분할된 영상에 포함되는 픽셀들의 중점을 구하여 특징점을 추출한다. 실험결과 복잡한 환경에서도 정확한 배경 분할과 사용자 동작을 대표하는 특징점 추출이 약 12 fps로 가능함을 알 수 있었다.