검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        2.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper aims to review the odor removal performance and operating parameters of pilot and full-scale chemical scrubbers, bioscrubbers, biofilters, and biotrickling filters for odor control in wastewater treatment plants. Based on the performance of full-scale facilities installed in wastewater treatment plants, empty-bed residence times were the shortest for bioscrubbers (7.5±2.5s), followed by chemical scrubbers (20±8.1s), biotrickling filters (22.2±26.2s), and biofilters (48±30s). The removal efficiencies of complex odors by biofilters, biotrickling filters, bioscrubbers, and chemical scrubbers were 97.7±1.9%, 87.7±15.6%, 89.0±9.0%, and 70.0%, respectively. The investment cost was the lowest for biofilters, followed by biotrickling filters, bioscrubbers, and chemical scrubbers. In addition, the operating costs of these deodorization technologies were in the following order: biofilters < bioscrubbers and biotrickling filters < chemical scrubbers. However, most studies on odor control for wastewater treatment processes have been conducted on a laboratory scale with model odors (single odorous compound or mixtures of 2-3 odorous compounds). Therefore, field research to develop deodorization technologies for wastewater treatment plants should be more actively conducted to accumulate data for the design and operation of full-scale deodorizing systems.
        5,100원
        3.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The odors emitted from wastewater treatment plants are not only a health and hygiene problem, but can also lead to complaints from residents and have wider social ramifications such as bringing about falling property values in the surrounding area. In this paper, based on the data measured at domestic and overseas wastewater treatment facilities, the concentrations of complex odors and odorous compounds were compared for each treatment/process: primary treatment, secondary treatment, and sludge treatment processes. Odor compounds that contribute greatly to complex odors were summarized for each process. In addition, the characteristics of odor wheels for each wastewater treatment process, which provide both chemical and olfactory information regarding odors, were reviewed. For domestic wastewater treatment facilities, the complex odor concentrations (unit, dilution factor) of the primary and secondary treatment processes were 4.5-100,000 (median, 32.1) and 2.5-30,000 (median, 10.7), respectively. However, the complex odor concentrations in the sludge treatment process were 3.0-100,000 (median, 118.7), which was more than three times higher than that in the wastewater treatment process. In the wastewater treatment process, those odor compounds making the greatest contributions to complex odors were sulfur-containing compounds such as hydrogen sulfide, dimethyl sulfide, and dimethyl disulfide DMS. In order to properly manage odors from wastewater treatment plants and minimize their impact, it is important to understand the status of odor emissions. Therefore, the compositions and concentrations of odors from wastewater treatment processes and odor wheel information, which are reviewed in this paper, are used to evaluate the potential risk of odor from wastewater treatment facilities in order to derive strategies to minimize odor emissions. Moreover, the information can be usefully used to introduce the best available technology to reduce odors emitted from wastewater treatment facilities.
        5,700원
        4.
        2000.08 KCI 등재 서비스 종료(열람 제한)
        Buffer zone selection technique for natural purification of livestock wastewater within a small agricultural watershed was developed using Geographic Information Systems. The technique was applied to 4.12 km2 watershed located in Gosan-myun, Ansung-gun which have 20 livestock farmhouses. As a necessary data for selecting process, feedlot site map, digital Elevation Model (DEM), stream network, soil and land use map were prepared. By using these data, wastewater moving-path tracing program from each feedlot to the stream was developed to get the basic topographic factors; average slope through the paths, distance to the nearest stream and watershed outlet. To identify the vulnerable feedlots for storm event, the grid-based storm runoff model (Kim, 1998; Kim et al., 1998) was adopted. The result helps to narrow down the suitable area of buffer zone, and finally by using subjective but persuasive conditions related to elevation, slope and land use, the suitable buffer zones were selected.