본 연구에서는 폴리술폰 분리막을 이용한 바이오가스 정제 공정으로 고선택성 소재를 이용한 2단 공정의 높은 회 수율 및 경제성과 동등한 수준의 회수율을 확보하기 위해 저온 고압의 분리막 공정을 설계하고 평가하였다. 폴리술폰 고분자 를 4성분계 도프를 이용하여 비용매 유도 상전이법으로 중공사 분리막을 제조하였다. 기체 분리용 중공사 분리막은 1.6 m2의 유효 막면적을 갖는 샘플을 제조하여 상온 및 저온에서 기체 투과 특성을 평가하였다. 제조된 기체분리막 모듈의 온도에 따 른 기체 투과 특성을 분석하기 위하여 온도별 단일 기체 투과도를 평가한 결과 이산화탄소와 메탄 투과도는 20°C에서 각각 412, 12.7 GPU이며, -20°C에서는 각각 280, 3.6 GPU로써 이상 선택도는 32.4에서 77.8로 향상되었다. 단일 기체 투과 테스 트 후 혼합 기체에 대한 분리 테스트를 진행하였으며, 모듈 1단 구성 및 2단 구성(막 면적비 1:1, 1:2, 1:3)을 통하여 투과 거 동을 살펴보았다. 1단 구성에서는 stage-cut이 상승함에 따라 메탄의 농도가 상승하지만, 반대로 회수율은 떨어지는 결과를 나 타내었다. 2단 구성 테스트에서는 메탄 농도 97% 기준에서 막 면적비 1:1보다 1:3이 메탄의 회수율이 더 높게 측정되었으며, 공급 기체의 온도가 낮을수록 메탄의 회수율이 높아짐을 확인하였고, 최종적으로 폴리술폰 2단 공정에서 메탄 농도 97%, 회 수율 97%의 결과를 달성하였다.
In this study, a MWCNT(multi-wall carbon nanotube) was added to polysulfone(PSf) support layer to improve flux of TFC(thin film composite) RO(reverse osmosis) membrane. Two different kinds of MWCNT were used. Surfaces of some MWCNTs were modified hydrophilically through acid treatment, while those of other MWCNTs were modified through heat treatment to maintain their hydrophobicity. MWCNT/PSf support layer was prepared by adding PSf to the NMP mixed solvent containing 0.1 wt% MWCNTs using a phase inversion method. The surface porosity of the MWCNT/PSf support increased by 42~46% while its surface pore size being maintained. The TFC RO membrane made of MWCNT/PSf support layer showed a 20% flux increase while its salt rejection characteristics is sustained. In addition, the MWCNT/PSf support layer has better mechanical stability than the PSf support layer, there resulting in an increased resistance of flux reduction due to physical pressure.
폴리술폰 고분자는 비대칭 정밀여과 멤브레인 제조에 가장 널리 사용되는 고분자 소재이다. 폴리술폰 멤브레인은 소수성 특성으로 인하여 공정상에서 빠른 막오염이 일어난다. 고분자 블렌딩은 폴리술폰 멤브레인의 수명을 향상시키는데 있어 가장 간단하고 효과적인 방법이다. sPES는 폴리술폰 블렌딩 방법을 통하여 소수성을 해결할 수 있는 유용한 친수성 고분자이다. 본 연구에서는 PSF/sPES/DMF/PVP/BE 고분자 용액을 물에 침지시켜 정밀여과 멤브레인을 제조하였다. 캐스팅 용액에 소량의 sPES 첨가함으로써 정밀여과 멤브레인 구조 변화를 볼 수 있었다. sPES의 첨가는 높은 비대칭성과 활성층의 성장, 그리고 평균 기공 크기의 감소를 가져왔다. 하지만 수투과량은 PSF/sPES/DMF/PVP/BE로 만든 멤브레인이 PSF/DMF/PVP/BE로 만든 멤브레인에 비해 더 큰 값을 보였다.
최근 온실가스로 인해 기후 이상현상이 급증하면서 이산화탄소 분리 및 포집기술에 관한 관심이집중 되고 있다. 본 연구에서는 이산화탄소 분리를 위한 고분자 분리막 재료로 극성 기체인 CO2에 대한 높은 용해선택도를 보이는 polyethylene glycol(PEG)와 폴리설폰 공중합체를 제조하였다. 공중합체의 합성여부는 H-NMR 및 FT-IR 분석을 통해 확인되었다. 도입된 PEG 분자량에 따른 기체 분리 특성 및 열적, 물리적 특성이 평가되었다. 도입된 PEG의 분자량이 증가할수록 이산화탄소 투과도와 CO2/N2 선택도가 증가하는 것을 확인 하였다.
정밀여과막 제조에 있어 폴리술폰 고분자 용액에 술폰산기를 가지는 폴리술폰(s-PSF)의 첨가가 분리막의 구조 및 투과 특성에 미치는 영향을 조사하였다. 정밀여과 고분자 분리막은 폴리술폰/아프로틱 용매계/폴리비닐피롤리돈/2-부톡시에탄올을 함유하는 고분자 용액을 이용하여 캐스팅 한 후 물에 침지하여 제조하였다. 캐스팅 공정은 증기유도 상전이와 용매-비용매 상전이 공정 시간을 조정하여 비대칭 구조가 발달된 정밀 여과막을 얻을 수 있었다. DMF 단일용매와 NMP/DMAc 혼합용매계 두 가지 용매 조건에 대한 제막 결과를 비교하여 살펴보았다. 비대칭성이 나타나며 유량 향상을 보인 용매는 DMF 단일용매로 s-PSF 함량 1.53wt%이었으며 14,475(L/m²hr)의 유량과 0.246㎛의 평균기공을 나타내었다.
최근 온실가스로 인해 기후 이상현상이 급증하면서 이산화탄소 분리 및 포집 기술에 관한 관심이집중 되고 있다. 본 연구에서는 이산화탄소 분리를 위한 고분자 분리막 재료로 극성 기체인 CO2에 대한 높은 용해선택도를 보이는 polyethylene glycol(PEG)와 폴리설폰 공중합체를 제조하였다. 공중합체의 합성 여부는 H-NMR 및 FT-IR 분석을 통해 확인되었다. 도입된 PEG 분자량에 따른 기체 분리 특성 및 열적, 물리적 특성이 평가되었다. 도입된 PEG의 분자량이 증 가할수록 이산화탄소 투과도와 CO2/N2 선택도가 증가하는 것을 확인 하였다.
현재의 단백질 분리 공정들은 비용과 시간이 많이 들고 오래 걸리는 단점을 가지고 있다. 이러한 단점을 해결하기 위해서 분리막을 이용한 방법들이 계속적으로 연구되고 있다. 먼저, 단백질 분리공정에는 단백질 크기에 따른 분리공정 과 pH에 따른 단백질 표면의 전하 차이를 이용한 분리 공정이 있다. 그 중에서도 본 연구는 유사한 크기의 단백질을 분리하기 위해 폴리술폰을 개질하여 전하를 부여하였으며, 상전환법을 이용하여 분리막을 제조하였고 제조된 분리막 표면의 Zeta potential을 측정하여 pH에 따른 표면의 전위차를 확인하였다. FT-IR 과 1HNMR을 이용하여 화학구조를 분석하였으며, UV Spectrometer를 이용하여 단백질의 농도를 측정하였다.
본 연구에서는 폴리술폰층 표면에 계면 중합 반응을 시켜 정삼투 복합 박막을 얻는 방법에 있어서, 지지층인 폴 리술폰층과 활성층인 폴리아미드층 사이에 테트라에톡시실란 단량체의 졸-젤 반응을 통하여 고분자를 합성함으로써 친수성 경계층을 형성시키는 방법에 관한 제조법을 제시하였다. 폴리술폰층은 막 저항을 최소화하기 위하여 아주 얇은 부직포를 사 용하였다. 테트라에톡시실란의 졸-젤 반응으로 형성된 고분자 경계층이 폴리술폰층과 폴리아미드층 사이에 형성된 정삼투 분 리막은 친수화도, 유량 향상 등 정삼투 분리막 투과 특성에 있어 향상된 결과를 보여 주었다. 폴리아미드 계면 중합과 테트라 에톡시실란 졸-젤 중합의 순서를 변화시킴으로써 표면 구조 특성 및 정삼투 투과 특성이 크게 달라짐을 볼 수 있었다. 정삼투 막의 투과 특성은 실험실 용량의 정삼투 평가 장치를 통하여, 정삼투 분리막 내 폴리실록산의 분포와 구조는 FE-SEM과 EDAX를 이용하여 조사하였다. PS_PA_TEOS막의 경우 유량에 있어 79.2 LMH로 현격한 증가가 있었으나 염의 역확산 속도 역시 7.10 GMH로 증가하였다. 반면 PS_TEOS_PA막의 경우 PS_PA막에 비해 염의 역확산 속도는 1.60 GMH로 유지되면서 유량이 54.1 LMH로 증가하는 현상을 확인할 수 있었다.
정삼투 분리막 용도에 적합한 폴리아미드 복합막의 제조에 있어 지지층의 극성 및 공극률이 폴리아미드 구조 및 정삼투 분리막 투과 성능에 미치는 영향을 살펴보기 위하여 클레쏘킬레이트 금속착물(0.1-0.5중량%)이 함유된 폴리술폰(18중 량%) 용액을 상전이 공정을 통하여 지지층을 제조하였다. 제조된 지지층 상에 방향족 폴리아미드 활성층을 제막하였다. 다공 성 PSF 지지층 제조를 위하여 상대적으로 낮은 폴리술폰(12중량%) 용액을 이용한 지지층을 폴리에스터 필름상에서 제조한 후 필름을 제거하고 제조된 지지층 상에 방향족 폴리아미드 활성층을 제막하였다. 제막된 시편 중 폴리술폰(18중량%)/금속착 물(0.5중량%)로 만들어진 FO막은 유량 9.99 LMH, reverse salt flux 0.77 GMH로 HTI의 상용막(10.97 LMH, 2.2 GMH)과 비교해도 거의 비슷한 유량값과 향상된 RSF 값을 얻을 수 있었다. 캐스팅 용액의 금속착물의 첨가로 활성층 두께가 줄어들 었으나 제거효율은 향상되는 결과를 얻을 수 있었다.
Thin-film composite membranes (TFCs) have dominated desalination markets for recent decades, but a higher water permeance is still necessary to reduce the energy consumption. Although most researches have focused on the ultrathin active layer of TFCs, the supports should also be considered to further enhance the membrane performances. In this study, TFCs were fabricated on PSf supports containing carbon nanotubes (CNT) by interfacial polymerization. CNT/PSf supports show rougher and more porous surface morphologies than those of bare PSf supports. Because of such surface characteristics, CNT/PSf supports were favorable to increase the roughness and surface area of TFCs. Consequently, TFCs prepared on CNT/PSf nanocomposite supports showed a 41% enhanced water permeance without losing its salt rejection compared to the bare TFCs.
현재 수준의 단백질 분리는 공정비용이 많이 들고 시간이 오래 걸린다는 단점이 있다. 이러한 단점들을 해결하기 위해서 공정이 비교적 간단하고 친환경적인 분리막을 이용한 방법들이 연구되고 있다. 먼저, 단백질 분리공정을 두 가지 정도로 나눌 수 있고, 이는 단백질 크기에 따른 분리공정과 pH에 따른 단백질 표면의 전하 차이를 이용한 분리 공정을 들 수 있다. 본 연구는 폴리술폰의 표 면전하를 개질하여서 유사한 크기의 단백질을 분리하고자 하였으며, 용매를 이 용한 고분자용액을 만들고 비용매에 침전하여 분리막을 제조하는 상변환법을 이용하여 제조하였고, 제조된 분리막 표면의 Zeta potential을 측정하여 pH에 따른 표면의 전위차를 확인하였다. 폴리술폰의 표면개질을 확인하고자 FT-IR 과 1HNMR을 이용하여 화학구조를 분석하였으며, UV Spectrometer를 이용하여 단 백질의 농도를 측정하였다.
본 실험에서는 고분자의 농도, 첨가제의 종류 및 함량에 따라 도프 용액을 이용하여 분리막제조하였다. 분리막의 모폴로지는 전자주사현미경(SEM)을 통해 관찰 하였으며, 막의 모폴로지와 순수투과도의 관계를 확인할 수 있었다. 필터화 모듈을 제조하여 수투과도 및 바이러스, 박테리아 등과 같은 미생물 제거성능을 측정하였다. 제조된 중공사막의 단면은 sponge 형태로 표명으로 갈수록 치밀한 형태를 띄는 것을 확인하였으며, 수투과도는 50-70 ml/min으로 높은 값을 나타 내었으며, 필터화모듈의 경우 수투과도는 1.6 LPM의 높은 투수량을 나타내며, 박테리아와 바이러스의 제거성능은 log 6의 값의 높은 수치를 보였다.
본 연구에서는 이산화탄소를 선택적으로 분리하기 위한 기체분리용 고분자 분리막을 제조하기 위해 폴리에틸렌글리콜(PEG)계 공중합체를 제조하였다. 우수한 기계적, 열적, 화학적 특성을 가지는 폴리술폰계, 폴리이미드계 고분자에 폴리에틸렌글리콜을 도입하여 보다 우수한 이산화탄소 선택성을 가지는 분리막을 제조하고자 하였다. 또한 보다 높은 투과성능을 가지는 분리막을 제조하기 위하여 높은 자유체적을 가지는 카도비스페닐플루오렌 및 Durene을 도입하였다. NMR, FT-IR로 화학적 구조를 확인하였고 TGA 및 DSC로 열적 특성, WAXD로 결정화도를 평가하였다. 또한 CO2, O2, N2, CH4의 기체 투과도 역시 측정하였다. 측정에 사용 된 기체는 모두 순수 기체를 사용하였다.
고분자 분리막 시스템은 우수한 가공성, 재료의 다양성 등의 장점으로 인해 연구가 활발히 진행되고 있다. 고분자 분리막 시스템이 타 공정과의 경쟁력을 가지기 위해서는 높은 투과성과 선택성, 화학적 내구성 등의 특징이 요구된다. 그러나 일반적으로 고분자 분리막은 특정기체에 대한 선택성이 향상되면 투과 성이 저하되는 trade-off관계를 가지고 있다. 투과도는 분리막 제조 시 다양한 공정조건과 제조 기술의 발전으로 한계를 나타내고 있다. 최근 들어 고분자 소 재에 관능기를 도입하여 기체의 용해성을 증가 시키거나 free volume을 증가시 켜 확산도를 증가시키는 연구가 진행되고 있다. 본 연구에서는 브롬, N3가 치환 된 폴리술폰을 제조하였으며, 이를 이용하여 고분자 분리막을 제조하였다 제조 된 분리막은 DSC, TGA 등을 이용하여 열적 특성을 파악할 수 있었다. Time-lag 장비를 이용하여 기체분리 특성을 확인 하였다.
본 연구에서는 bulky하면서 큰 자유체적을 가지는 플루오렌기를 도입하여 새로운 폴리술폰(PSf)고분자를 합성하고 해당 고분자에 PEG를 공중합시켜 분리막을 제조하였다. PEG 특성 피크 (2950 cm−1,1110cm−1)의 확인을 통해 PEG가 도입을 확인하였으며. PSf-PEG 분리막이 단일 유리전이온도를 가지는 것을 확인 하였다. 분자량 6000 PEG가 10 mol%가 포함된 PSf-PEG분리막에서만 60 °C 부근에서 용융점이 나타났다. PSf-PEG 분리막의 CO2기체투과도는 PEG함량에 따라 감소하는 거동을 보였지만 CO2/N2선택도는 증가하는 경향을 보였다. 비슷한 함량에서 PEG의 분자량이 증가함에 따라 CO2투과도는 증가하는 경향을 보였다.
현재 사용되는 단백질 분리공정은 비용이 많이 들고 시간이 오래 걸리는 단점을 가지고 있다. 이러한 문제점을 보완하기 위해서 분리막을 이용한 분리 공정들이 계속적으로 연구되고 있으며, 단백질의 크기에 따른 분리공정과 pH에 따른 단백질 표면의 전하 차이를 이용한 분리공정이 있다. 본 연구에서는 유사한 크기의 단백질을 분리하기 위해 폴리술폰을 개질하여 전하를 부여하였으며, 상전환법을 이용하여 분리막을 제조하였다. 분리막 표면의 Zeta potential을 측정하여 pH에 따른 표면의 전위차를 확인하였다. FT-IR과 1HNMR을 이용하여 화학구조를 분석하였으며, UV Spectrometer를 이용하여 단백질의 농도를 측정하였다.
최근 온실가스로 인해 기후 이상현상이 급증하면서 이산화탄소 분리 및 포집기술에 관한 관심이 집중 되고 있다. 본 연구에서는 이산화탄소 분리를 위한 고분자 분리막 재료로 극성 기체인 CO2에 대한 높은 용해선택도를 보이는 polyethylene glycol(PEG)와 폴리설폰 공중합체를 제조하였다. 공중합체의 합성 여부는 H-NMR 및 FT-IR 분석을 통해 확인되었다. 도입된 PEG 분자량에 따른 기체 분리 특성 및 열적, 물리적 특성이 평가되었다. 도입된 PEG의 분자량이 증가할수록 이산화탄소 투과도와 CO2/N2 선택도가 증가하는 것을 확인 하였다.
본 연구에서는 보다 플루오렌기를 포함한 폴리술폰 (PSf)과 PEG를 공중합시켜 분리막을 제조하였다. PEG 특성 피크 (2950 cm−1,1110cm−1)의 확인을 통해 PEG가 도입을 확인하였다. PSf-PEG 분리막이 단일 유리전이온도를 가지는 것을 확인 하였으며 분자량 6000 PEG가 10 mol%가 포함된 PSf-PEG 분리막에서만 60 °C 부근에서 용융점이 나타났다. PSf-PEG 분리막의 CO2기체투과도는 PEG함량에 따라 감소하였지만 CO2/N2선택도는 증가하는 경향을 보였다. 비슷한 함량에서 PEG의 분자량이 증가함에 따라 CO2투과도는 증가하는 경향을 보였다.