검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 439

        41.
        2017.05 서비스 종료(열람 제한)
        2014년 슬러지 발생량은 10,187ton/day로 2008년 기준 약 7,446ton/day에 비해 발생량이 약 37% 증가하였다. 하수슬러지의 발생량은 매년 증가할 것으로 예상되기 때문에 하수슬러지 발생량을 최소화 시키고 자원화하기 위한 여러 가지 대안 중 혐기성 소화방법과 슬러지 감량화 기술이 대안으로 제시되고 있다. 소화조는 장시간의 체류시간, 설계 값보다 낮은 소화효율 등의 고질적인 문제가 있으므로 슬러지를 효과적으로 처리 하기위해 이용 효율을 극대화하는 방안이 필요하다. 따라서 소화조 투입 전 단계에서 하수슬러지를 가용화하는 전처리를 실시하여 가수분해를 촉진시키고, 소화 효율을 높이는 방법을 이용하고 있다. 전처리 공정은 열적처리, 물리·화학적 처리, 생물학적 처리 등으로 구분되며, 이중 열적전처리 공정은 고온조건이나 저온조건에서 고분자 형태로 존재하는 슬러지를 저분자 형태로 전환시켜 바이오가스의 생산량과 소화효율을 증대시키는데 효과적인 것으로 알려져 있다. 열적전처리 중에서도 저온 열적전처리는 고온 열적전처리에 비해 공정 운전에 들어가는 에너지 소모량이 적고, 바이오가스 생산면에서도 효과적으로 알려져있다. 따라서 본 연구에서는 생슬러지 및 잉여슬러지를 대상으로 60~120 ℃, 30~120분 조건에서 실시한 저온 열적전처리 공정에 의한 물리·화학적 특성 변화를 분석하고, BMP test를 통하여 바이오 가스 생산율을 평가하였다. 용존성 물질로 존재하는 SCODCr, NH4+, PO43-, VFAs 분석결과, 생슬러지 및 잉여슬러지 모두 열적전처리 온도가 상승함에 따라 증가하는 것으로 나타났다. 가용화율은 120 ℃ 120분조건에서 SCODCr의 경우 가용화 전 각각 453mg/L, 1,698mg/L에서 열적전처리 후 최대 5,337mg/L, 8,769mg/L로 증가하였으며, TCODCr 중 SCODCr가 각각 약 12%, 18.6%차지하는 것으로 나타났다. 따라서 저온열적가용화 또한 슬러지의 세포 floc 파괴에 의한 내부 물질의 용출에 기인하여 가수분해 단계를 촉진시켜 소화효율을 향상시킬 수 있다고 판단된다.
        42.
        2017.05 서비스 종료(열람 제한)
        수도권매립지 하수슬러지 반입비용 상승과 2018년도부터 시행되는 폐기물처분부담금제 도입으로 경제적인 하수슬러지 재활용 방안 모색이 필요하다. 하수슬러지를 생물학적 건조하여 연료로 사용하거나 퇴비화하여 퇴비로 사용하는 방식은 처리 비용이 저렴하다. 본 연구에서는 하수슬러지 생물학적 건조 파일럿 및 실증 실험결과를 분석하였다. 하수슬러지 169 kg(50% 중량비)에 음식물 잔재물 84 kg, 미생물활성유도제 55 kg, 코코피트 27kg를 혼합하여 초기 함수율을 55%로 낮추고 반응 1일 후부터 최소 유량으로 공기를 송풍하였다. 반응 1일 후부터 일 3회 교반을 실시하였다. 혼합물 온도가 반응 1일만에 76℃까지 높게 올라가 반응 4일째까지 50℃ 이상 유지되었다. 혼합물 함수율은 초기 56%에서 반응 4일 후 45% 정도로 10% 정도 감소되었다. 하수슬러지 건조물 반송 실험에서는 건조슬러지(173 kg, 51%)를 하수슬러지(150 kg, 44%), 미생물활성유도제(15 kg, 4%)와 혼합하여 건조하였다. 반응 1일 후부터 지속적으로 공기를 송풍하고 교반하였다. 하수슬러지 혼합물 온도가 반응 1일만에 71℃까지 높게 올라갔으나 반응 2일째 대기온도로 낮아졌다. 이는 공기 송풍량을 높인 결과이다. 혼합물의 함수율은 초기 60%에서 반응 2일 후 약 51% 정도로 10% 정도 감소되었다. 미생물의 분해열을 유지하기 위해서는 적정 송풍량에서 공기 공급이 중요하다. 하수슬러지 10톤(53%)에 미생물활성유도제 2톤, 수피 3톤, 1차 발효퇴비 3.7톤을 포크레인으로 1차 혼합하고 혼합기에서 2차 혼합 후 반응로에 투입하였다. 송풍기 연속가동으로 공기 송풍하고 일 1-2회 포크레인으로 뒤집기를 실시하였다. 혼합슬러지 더미 상부 평균 온도는 반응 2일에 70℃까지 높아졌다. 혼합슬러지 함수율은 2일 후 54%로 높아진 후 7일째 44%까지 낮아졌다. 반송 실험으로 하수슬러지 10.2톤에 반송슬러지 5.5톤, 미생물활성유도제, 수피, 1차발효퇴비를 5.4톤을 포크레인으로 1차 혼합하고 혼합기에서 2차 혼합 후 반응로에 투입하였다. 송풍기를 연속으로 가동하고 일 1-2회 포크레인으로 뒤집기를 실시하였다. 혼합슬러지 더미 상부 온도는 반응 5일째 66℃까지 높아졌고 함수율은 반응 10일째 45%까지 낮아졌다. 혼합슬러지 함수율 저감 효율을 높이기 위해 혼합슬러지 더미 위에서 로터리 교반기로 혼합해주고 발생된 수증기를 외부로 배출하여 수증기 증발효과를 높일 필요가 있다.
        43.
        2017.05 서비스 종료(열람 제한)
        하수슬러지의 발생량은 꾸준히 증가하고 있으며, 하수슬러지의 해양투기 금지로 인해 대체 처리 방안들이 요구되고 있다. 다양한 하수 슬러지 처리 방안들 중, 하수 슬러지를 이용한 활성탄의 제조는 슬러지를 폐기가 아닌 재이용하는 방안으로 제기되고 있다. 활성탄은 탄소 성분을 이용하여 제조되므로, 하수 슬러지를 이용하여 활성탄을 제조하는 것도 가능하다. 기존의 대기오염제어설비에서 쉽게 제거되지 않는 원소 수은은 활성탄 흡착을 통해 제거될 수 있다. 본 연구에서는 국내 하수처리장에서 발생한 건조슬러지를 이용하여 다양한 물리적 특성을 지닌 활성탄을 제조하였고, 수은 흡착 능력을 평가하였다. 그리고 다른 원료에서 제조된 활성탄과 수은 흡착 결과를 서로 비교하였다.
        44.
        2017.05 서비스 종료(열람 제한)
        우리나라 유기성 폐기물처리의 가장 큰 비중을 차지하던 해양투기 방법이 폐기물 해양배출을 금지하는 런던협약으로 인해 2012년부터 해양투기가 전면 금지됨에 따라 안정적이고 지속적인 육상처리 시설이 요구되고 있다. 환경부는 폐기물 관리법으로 온실가스 발생 억제 및 재활용 촉진을 위하여 유기성 슬러지의 직매립을 금지하였다. 그동안 유기성 폐기물을 자원화하기 위한 방법으로 퇴비화 기술이 많이 연구되어 왔으나 여러 가지 문제점들이 야기되고 있다. 소각방법은 다이옥신과 같은 2차 오염의 우려가 있으며, 퇴비화 과정에서는 발생되는 악취로 인하여 민원이 잦아지고 결국 퇴비화 시설이 폐쇄되는 경우가 많았다. 우리나라에서 쓰이고 있는 퇴비화는 비 연속식 처리로 퇴비 원료(유기성 폐기물)의 제한적 처리와 퇴비화 활성에 요구되는 시간이 길어 부지요구도가 높은 문제, 불안정한 최종 생성물, 감량화 실패, 장시간 온도조절 및 공기주입으로 인한 에너지 소비증가로 상용화에 어려움이 많다. 본 연구에서는 강릉시 하수종말처리장에서 배출되는 하수슬러지를 대상으로, 초고온 호기성 발효과정을 통해 하수슬러지의 퇴비화 진행에 따른 온도변화, 발효가스 분석, pH, C/N비, 수분함량, 고형물 유기물 변화, 부피 및 무게변화, 중금속 분석, 혼합 및 교반과 같은 반응인자들을 도출하여 운전 변수를 알아보았다. 한편 하수슬러지의 퇴비화 진행에 따른 시료와 발효 종료된 퇴비의 중금속 및 유해인자 분석을 통하여 퇴비의 발효 메커니즘 및 안정성을 검증하였다. 초고온 퇴비화 기술의 새로운 정립과 국내 연구가 전무한 초고온 발효공정의 data base 확보를 목적으로 하였다. 또한 퇴비화 과정에서 발생되는 악취도와 악취를 발생시키는 원인물질을 밝히고자 하였다.
        45.
        2017.05 서비스 종료(열람 제한)
        수열탄화 (HTC, Hydrothermal Carbonization)는 수분함량이 높은 바이오매스를 바로 적용하여 닫힌계에서(closed system)에서 승온 시키면 150℃∼250℃범위에서 열수(hot water)에 의하여 고형물의 유기물 일부가 분해되기 시작하여, 탈카르복실화(decarboxylation)와 탈수(dehydration)반응이 유도되며 O/C, H/C 비율을 낮추고 탄소고정을 통해 바이오매스 고형연료의 에너지밀도를 높여 연료로서의 특성이 향상된다. 또한 수열탄화 반응시 높은 수분함량을 건조하여 수분을 증발시키지 않고 물로 분리함으로서 수분 제거시 소비되는 에너지를 일반 건조기술 대비 50%이상 절감함으로서 하수슬러지 고형연료화의 경제성을 향상 시킬 수 있다. 이렇게 분리된 액체생성물에는 유기물 분해에 의해서 용해성 유기물이 다량 농축되어 혐기소화의 전처리 기술로도 적용되고 있다. 본 연구에서는 I시 하수슬러지를 1년간 매달 sampling하여 계절별 하수슬러지 물리화학적 특성 변화와 수열탄화 적용 시 반응 및 연료 특성 변화를 확인하였다. 따라서 상용화 수열탄화 기술을 적용시 계절에 상관없이 안정적인 고형연료 확보 가능성을 확인하였다.
        46.
        2017.05 서비스 종료(열람 제한)
        우리나라는 런던협약 이행을 위하여 2012년부터 하수슬러지의 해양투기를 금지하고, 매립용 복토재, 발전소 보조연료, 바이오가스 생산 원료 등 하수슬러지를 다양한 재활용 물질로써 활용하기 위한 방법을 모색하여왔다. 이중 수열탄화(Hydrothermal carbonization)방법은 닫힌계에서 180℃~250℃온도조건과 이때 생성되는 반응기내 압력으로 운영되는 기술로, 기존 건조기술대비 에너지소비가 적은 연료화 기술이나 수열탄화 공정이후 다량으로 발생하는 탈리액의 처리가 필요하다. 이처럼 수열탄화 공정이후 고액분리된 액체생성물을 효과적으로 처리·활용하고자 본 연구는 하수슬러지 수열탄화 액체생성물의 단독 혐기소화 및 음폐수와의 혼합소화실험을 통하여 바이오가스 생산추이를 비롯한 혐기소화 특성변화를 관찰하였다. 실험은 유효용적 5L 규모의 혐기성소화조를 이용하였고, 35℃ 항온조건을 유지하기 위하여 water jacket형태로 반응기를 구성하였으며, 반응기 내부 균질화를 위하여 80rpm속도로 기계적 교반을 진행하였다. 유기물부하율(OLR)은 1g VS/L-day로 운영후 1.5g VS/L-day까지 증대시켰다. 실험 결과, OLR 1g VS/L-day 조건에서 하수슬러지 수열탄화 액체생성물의 경우 0.17L/g COD의 메탄전환율을 보였고, 음폐수혼합액의 경우 메탄전환율은 0.30L/g COD로 수열탄화 액체생성물 단독소화일 때 보다 높은 값을 보였다. OLR 1.5g VS/L-day 조건에서는 수열탄화액 액체생성물 단독처리시 OLR 1g VS/L-day 조건보다 메탄전환율이 크게 감소하는 경향을 보였고, 음폐수 혼합액은 OLR 1g VS/L-day 조건과 유사한 메탄전환율을 나타냈다.
        47.
        2017.05 서비스 종료(열람 제한)
        하수슬러지는 2006년 런던협약이후 해양투기 금지 대상물질로 지정되어 효율적인 처리에 대한 연구가 진행되고 있다. 이에 대한 방안으로 각광 받고 있는 반탄화 공정은 시료의 분쇄성을 높여 혼소에 용이하며, 처리 후 시료가 소수성을 띄기 때문에 미생물에 대한 오염이 적다. 또한 에너지밀도를 높일 수 있어 원시료에 비해 높은 발열량을 가진다. 하지만 다량의 수분을 함유하고 있어 그 이용이 제한적이다. 본 연구에서는 고 함수율 시료인 하수슬러지의 단점을 보완하고자 저 함수율 시료인 폐목재를 1:1로 혼합하여 lab규모 실험을 통해 반탄화 특성을 파악하였다. 반응시간 20분 조건에서 반응온도를 200 ℃에서 50 ℃ 간격으로 550 ℃까지 승온시켰으며, 반응온도 250 ℃, 300 ℃조건에서 반응시간 10분에서 10분 간격으로 50분까지 증가시켰다. 생성된 반탄화물에 대하여 공업분석, 원소분석 및 발열량분석을 진행하였으며, 이를 통해 에너지수율, 연료비, 탄소비 등 반탄화물의 특성을 파악하였다. 반탄화물의 공업분석결과 반응온도 및 반응시간이 증가할수록 가연분은 감소하였으며, 회분과 고정탄소는 증가하는 경향을 보였다. 발열량의 경우 반응온도가 증가함에 따라 증가하는 경향을 보이다가 반응온도 400 ℃에서 최대 값(5082.7 kcal/kg)을 보인 후, 감소하는 경향을 보였다. 또한 원소분석결과를 기반으로 석탄 종의 O/C와 H/C의 비(Van Krevelen Diagram)을 비교하였다. 수소 및 산소는 반응온도가 증가함에 따라 감소하는 경향을 나타냈으며, 탄소함량은 전반적으로 증가하는 경향을 보였다.
        48.
        2017.05 서비스 종료(열람 제한)
        급속한 경제 성장과 함께 국내 하수처리 시설의 수는 증가하여 왔으며, 이로 인해 하수처리 시설로부터 발생되는 하수슬러지의 양도 꾸준히 증가하여 왔다. 2014년 기준 연간 발생량이 3,651,029 톤에 이르는 하수슬러지는 국제협약과 국내 법제도로 인해 해양투기와 직매립이 금지됨에 따라 이를 처리하기 위한 적절한 방법의 개발이 요구된다. 최근 하수슬러지 처리 방법을 살펴보면 전체 재활용되는 양의 43.8% (w/w)인 상당량의 하수슬러지가 건조 및 탄화의 방법을 통해 연료화 되고 있다. 하지만 슬러지의 경우 높은 함수율로 인해 건조 및 탄화 공정에 많은 양의 에너지가 소모되는 문제점이 있다. 이를 극복하기 위한 수단으로 슬러지에 함유되어 있는 수분을 열분해 반응에 이용할 수 있으며 비교적 낮은 온도에서 바이오매스의 탄화가 가능한 수열탄화가 많은 관심을 받고 있다. 본 연구에서는 슬러지의 수열탄화를 실시하고 생성된 바이오차를 이용하여 고형연료로서의 특성을 분석하는 한편 연료특성 개선을 위한 타 바이오매스와의 혼합처리 가능성을 확인하였다. 연구결과 180-270 ℃의 온도조건에서 생성된 바이오차는 모두 국내 바이오고형연료제품의 기준 발열량인 3,000 kcal/kg 보다 높은 4,000 kcal/kg 이상의 발열량을 보였다. 하지만 바이오고형연료제품 기준 중 회분함량에 대한 항목을 살펴보면 원시료 기준 29.11% (w/w)로 관련 기준인 15% (w/w)와 비교할 때 높았던 슬러지내 회분함량이 수열탄화 과정을 거치며 처리 온도에 따라 32.75-47.64% (w/w)로 오히려 증가하는 것을 확인할 수 있었다. 따라서 슬러지를 고형연료로 사용하기 위해서는 회분함량 개선을 위한 혼합물의 투입이 필요할 것으로 판단되었다. 이를 위하여 최근 대량 생산이 용이하여 차세대 에너지원으로 주목받고 있는 미세조류와의 혼합을 통한 연료특성 개선 가능성을 확인하였다. 미세조류의 경우 슬러지와 동일한 조건에서 수열탄화를 통하여 처리될 경우 회분함량이 1.29-2.96% (w/w)로 현저히 낮고, 발열량 또한 6,740 kcal/kg으로 높은 값을 보였다. 따라서 적절한 비율로 혼합된 슬러지와 미세조류의 수열탄화를 통한 처리 시 생성된 바이오차는 국내 바이오고형연료제품 기준을 만족할 수 있을 것으로 판단된다.
        49.
        2017.05 서비스 종료(열람 제한)
        하수슬러지, 음폐수, 가축분뇨 등의 유기성폐기물의 해양투기 금지와 육상처리에 대한 대책 마련이 시급해지면서 유기성폐기물을 통합소화하여 메탄 등의 신재생에너지를 생산할 수 있는 바이오가스화 기술이 대안으로 부각되고 있다. 국내에서 가동 중인 바이오가스화 시설 중 하수슬러지 혐기소화의 경우, 현행 법령에서 제시하는 유기물분해율과 메탄생성율 기준을 만족하지 못하고 있다. 또한 음식물류폐기물의 혐기소화는 다른 유기성 폐기물에 비하여 처리효율은 높으나 안정적인 시설 운영을 도모하기 어려운 실정이다. 본 연구에서는 12개소 하수슬러지 바이오가스화 시설을 대상으로 유기물 분해율, 메탄생성율을 산정하여 음식물류폐기물 투입 비율에 따른 영향을 평가하였다. 소화조 유입 및 유출수에 대한 TS, VS, 영양물질 (탄수화물, 단백질, 지방) 함량을 분석하여 이론적인 메탄생성율을 계산한 후 실제 현장에서 발생되는 메탄생성율과 비교하여 효율성을 판단하였다. 또한 사계절 정밀모니터링에서 도출된 휘발성지방산, 알칼리도, 암모니아성 질소 등 저해인자를 측정・분석하고 대상 바이오가스화 시설의 안정적 운전 여부를 진단하였다.
        50.
        2017.05 서비스 종료(열람 제한)
        하수처리장의 증가와 함께 하수슬러지의 발생량 또한 매년 상승하고 있으며, 2025년은 2006년 대비 2배가 더 발생하게 된다. 이러한 하수슬러지는 주로 해양투기와 재활용에 의하여 처리되어 왔으나, 가장 단순하고 저렴한 방식이었던 해양투기가 2012년 01월부터 전면금지가 되었다. 현재 하수슬러지의 처리방법 중 재활용은 약 56% 정도를 차지하고 있다. 이 중 재활용은 매립지의 복토재, 건설자재, 토목자재, 시멘트 원료화 등으로 활용되고 있다. 지금까지 재활용 처리방법 중 매립지의 복토재로 재활용하는 것이 많은 연구가 진행되어 왔으나 친환경적인 처리방법 및 MICP 미생물에 관한 고형화/안정화 연구는 아직 미흡하다고 판단된다. 따라서, 본 연구에서는 MICP를 형성하는 미생물을 이용하여 하수슬러지를 고형화/안정화 한 후 매립지의 복토재로서 가능성을 보고자 한다. 이에 본 연구는 MICP를 형성하는 미생물의 생물학적 및 광물학적 분석을 하였으며 하수슬러지 및 고화제의 물리화학적 분석을 수행하였다. 본 연구를 위하여 하수슬러지의 고형화적 품질기준인 pH, 수분함량, 투수계수, 일축압축 강도, 유해물질 함량 분석을 실시하였다. 또한, MICP를 형성하는 미생물에 의하여 하수슬러지가 고화처리 된 것인지 확인하기 위하여 탄산칼슘의 광물학적 분석을 병행하여 고형화/안정화에 대한 신뢰성을 갖고자 한다.
        51.
        2017.01 KCI 등재 서비스 종료(열람 제한)
        Due to the increasing sewage sludge generation from wastewater treatment facilities, sewage sludge has been reconsidered as a renewable energy source in various ways. Lipid extraction from sewage sludge is an applicable method for biodiesel production. Higher biodiesel production yields can be achieved through the improvement of lipid recovery efficiency. Although sewage sludge has different features due to its types and steps in treatment plants, lipid content of sewage sludge generally ranges from 10 to 15%. Among solvent extraction methods, the highest lipid recovery efficiencies were observed for chloroform-methanol extraction: 13.6-14.6% for primary sludge, 10.6-12.1% for waste-activated sludge, and 2.9-4.2% for digested sludge. The extraction residue of sludge can be used as biosolid refuse fuel (bio-SRF). After lipid extraction, the residue had decreased volatile matter and carbon content. Consequently, the calorific value of the residue decreased by 3,000 kcal/kg. The level of calorific value can be available to use bio-SRF.
        52.
        2016.11 서비스 종료(열람 제한)
        하수슬러지의 열풍건조시 하수슬러지의 특성, 고분자 응집제의 종류 및 주입량 등에 의해 발생되는 점성으로 인해 타공판에 부착성이 상당히 증가하여 건조효율을 낮추는 원인이 되고 있다. 이에 본 연구에서는 고분자 응집제로 인한 하수슬러지(생슬러지, 잉여슬러지, 혼합슬러지)의 부착특성을 평가하기 위하여 고분자 응집제 주입량에 따른 점도 변화를 측정하였으며, 또한 하수슬러지의 열풍건조시 부착성을 상당량 감소시킬 수 있도록 기존 타공판을 대체할 수 있는 다양한 타공판 종류별 부착특성을 평가하였다. 하수슬러지의 열풍건조시 기존 타공판(STS 304재질), 전해연마+티타늄코팅 타공판보다 크롬코팅된 타공판의 부착성이 가장 적게 발생되었으며, 또한 생슬러지 단독건조보다 잉여슬러지 단독건조시 부착성이 더 크게 나타났다.
        53.
        2016.11 서비스 종료(열람 제한)
        유기성폐기물 내 존재하는 질소를 회수하여 재이용 또는 재활용 하기 위하여 암모니아탈기 방법을 이용한 질소회수 효율 확보 방안을 연구하였다. 고농도 암모니아 함유 폐수에서(매립장 침출수, 식품폐수, 축산폐수 등) 목적으로 암모니아회수를 위한 탈기 기술 개발사례가 있으며 주로 탈기효율을 높임으로서 동력비용을 절감하는 목적으로 개발되었다. 따라서 암모니아 탈기 운영에서 60%이상을 차지하는 pH조절용 약품비용 절감을 위한 기술이 보급되어야 실질적인 상용화 및 보급이 활발해 질 것으로 판단된다. 암모니아 탈기 시 소요되는 공기는 입자성오염원이 존재할 경우 산소전달의 방해인자로 작용하기 때문에 이를 비교 평가하기 위해 고액분리 전・후를 비교 평가하여 이에 따른 탈기 효율 변화를 관찰하였으며 또한 pH에 따른 적정 NH3 /NH4 비율을 선정하여 pH조정용 약품비용 절감을 통해 경제성을 확보 하였다. 탈기 시 온도가 20℃일 때 소요되는 이론적 공기량은 2,400 L-air/L-water이나 70℃일 때는 이보다 약 10배 감소한 262 L-air/L-water 나타낸다. 이에 온도조건 변화를 통해 탈기 공정에서 대부분의 동력비를 소모하는 공기 주입량 절감을 위한 최적 방안을 도출하였다.
        54.
        2016.11 서비스 종료(열람 제한)
        하수슬러지의 발생량은 산업발달 및 인구증가로 꾸준히 증가하고 있으나, 하수슬러지의 해양투기 금지로 대체 할 수 있는 새로운 처리 방법이 요구되고 있다. 특히, 최근에는 건조슬러지를 재이용하는 다양한 방안들이 제기되고 있으며, 그 중 활성탄을 제조하여 이용하는 방법이 있다. 활성탄은 일반적으로 석탄이나 목재와 같은 탄소질 물질을 이용하여 제조된다. 또한 활성탄의 제조는 탄화와 활성화 공정으로 이루어지며, 탄화와 활성화 공정의 인자들의 변화를 통해 활성탄의 특성이 달라진다. 따라서 본 연구에서는 국내 건조 하수처리장에서 발생한 건조슬러지를 이용하여 활성탄을 제조하였다. 탄화시간, 탄화온도, 활성화시간, 활성화온도, 수증기 주입량과 같은 여러 인자들의 변화에 따른 활성탄의 비표면적, 기공분포도의 분석을 통해 활성탄의 최적조건을 도출하여 활성탄을 제조하고자 하였다.
        55.
        2016.11 서비스 종료(열람 제한)
        수열탄화(HTC, HydroThermal Carbonization)는 수분함량이 높은 바이오매스를 바로 적용하여 닫힌계에서 (closed system)에서 승온시키면 150℃~250℃범위에서 열수(hot water)에 의하여 고형물의 유기물 일부가 분해되기 시작하여, 탈카르복실화(decarboxylation)와 탈수(dehydration)반응이 유도되며 O/C, H/C 비율을 낮추고 탄소고정을 통해 바이오매스 고형연료의 에너지밀도를 높여 연료로서의 특성이 향상된다. 또한 수열탄화 반응시 높은 수분함량을 건조하여 수분을 증발시키지 않고 물로 분리함으로서 수분 제거시 소비되는 에너지를 일반건조기술 대비 50%이상 절감함으로서 하수슬러지 고형연료화의 경제성을 향상 시킬 수 있다. 이렇게 분리된 액체생성물에는 유기물 분해에 의해서 용해성 유기물이 다량 농축되어 혐기소화의 전처리 기술로도 적용되고 있다. 본 연구에서는 Lab scale과 1ton/day pilot plant를 이용하여 수열탄화를 하수슬러지에 적용하여 반응특성 및 연료 효율 향상을 확인하였다. 반응온도별 각 반응생성물의 특성 파악을 통해서 최적의 반응조건을 도출하였다. 또한 수열탄화 반응물에서 후단의 혐기소화 공정의 저해인자 제거를 위한 질소회수 공정으로 생기는 pH 변화에 따른 탈수특성 변화와 원인을 확인하였다.
        56.
        2016.11 서비스 종료(열람 제한)
        기존의 하수슬러지 처리는 슬러지의 안정화와 감량화를 주목적으로 하였으나 최근 슬러지 처리계획은 처리 후 슬러지의 유효이용을 포함하게 되었다. 특히 유럽, 미국, 일본 등에서는 하수슬러지를 biosolids로 정의하고 슬러지 처리방법을 자원화에 이용하고 있으며, 매립지 부족 및 대체에너지 확보를 위한 하수슬러지 감량화/에너지화 기술수요가 증가하고 있다. 이에 따라 국내에서도 슬러지의 에너지화에 대한 관심이 급증하였고 에너지화의 대표적인 방법으로 혐기성 소화가 이용되고 있으며, 연구의 초점이 소화조 설비 및 가용화 기술에 대한 연구에 집중되어 있다. 하지만 최근 유럽, 일본 등지에서는 혐기성 소화 이외에 하수슬러지 내에 포함된 지방 및 지질 성분으로부터 화학 촉매를 적용하여 바이오디젤로 전환하는 기술이 연구되고 있다. 따라서 본 연구에서는 국내의 하수 슬러지의 지질 함량에 대한 연구를 진행하고 지질회수율과 지질회수율을 높일 수 있는 방법에 대한 연구를 진행하였다. 하수슬러지의 지질 함량을 확인하기 위한 방법으로 화학적 방법인 지질의 용매 회수법을 사용하였으며, 지질회수율의 증대를 위한 전처리 방법으로 열적 전처리를 사용하여 지질회수율 증대를 확인하였다. 최적의 지질의 용매 회수법을 선정하기 위하여 3가지 용매를 사용하여 실험을 진행하였고, 열적 전처리의 최적 조건을 찾아보고자 125~250℃의 온도를 25℃ 범위로 시행하였다.
        57.
        2016.11 서비스 종료(열람 제한)
        하수슬러지 및 음식물류폐기물과 같은 유기성폐기물이 해양투기가 전면 금지되면서 육상처리 및 재활용처리가 관심이 되고 있다. 하수슬러지와 음식물류폐기물을 육상처리할 뿐만 아니라 신재생에너지를 생산할 수 있는 바이오가스화가 그 처리에 좋은 대안으로 부각되고 있다. 최근 하수슬러지 혐기소화시설에서 음식물류폐기물을 병합처리 하는 경향이 늘고 있다. 그러나 운전중인 하수슬러지 바이오가스화 시설은 그 유기물분해율과 메탄생성율 측면에서 그 효율이 매우 저조하며, 음식물류폐기물 바이오가스화 시설은 효율은 많이 증가하였으나 아직까지는 그 안정적 운전이 미비한 실정이다. 본 연구에서는 최근 하수슬러지와 음식물류폐기물을 병합처리하는 추이에 맞춰 효율성과 안정적 운전에서 문제점을 조사하고 이를 해결할 수 있는 고려인자들을 도출하여 그 가이드라인을 제시하는 것을 목적으로 하고 있다. 이를 위하여 하수슬러지만 혐기소화하는 5개 시설과 하수슬러지 혐기소화시 음식물류폐기물을 병합처리하는 9개 시설을 대상으로 현장조사를 실시하였다. 현장조사의 목적은 병합처리 바이오가스화 시설의 문제점들을 조사하고 그 문제점을 해결하기 위한 고려인자들을 도출하는 것이다. 또한 계절별로 하수슬러지 바이오가스화 시설 4개와 병합처리시설 7개에 대하여 정밀모니터링을 실시하였다. 이 정밀모니터링을 통하여 현장조사에서 도출된 고려인자에 대한 구체적인 가이드라인들을 제시하고자 한다. 가이드라인 제시는 전처리 등 6가지 공정별로 하수슬러지와 음식물류폐기물 물성들을 고려하여 제시하였다.
        58.
        2016.04 KCI 등재 서비스 종료(열람 제한)
        This paper assesses the feasibility of producing fuel energy from sewage sludge via four processes: microwave-induced pyrolysis/gasification and conventional pyrolysis/gasification. Both pyrolysis and gasification produced gas, char, and tar. The gas produced for the gasification contained mainly hydrogen and carbon monoxide with a small amount of methane and hydrocarbons (C2H4, C2H6, C3H8). However, the gasification produced higher carbon monoxide instead of the hydrogen. The microwave gasification generated higher heavy tar compared to other processes. As a light tar, benzene generated higher value for both the pyrolysis and gasification. The sludge char showed a vitreous-like texture for the microwave process and a deep crack shape for the conventional heating process. These results indicate that the gas produced from the microwave processes of wet sewage sludge might be usable as a fuel energy source, but this would require removal of the condensable PAH tars. The sludge char produced could also be used as a solid fuel or adsorbent.
        59.
        2016.04 KCI 등재 서비스 종료(열람 제한)
        In this study, GC-MS linked with an automatic thermal desorber was used to quantitatively analyze the odorous and volatile compounds in the gas emitted from a sewage sludge drying facility. In addition, the removal characteristics of these compounds were investigated by using a pilot-scale packed bed wet scrubber. A quantitative analysis for 58 odorous and volatile compounds in the gas was successfully achieved with GC-MS and GC-FPD. The a quantitative analysis revealed the major odorous compounds were hydrogen sulfide and acetaldehyde. In addition, D-type siloxane compounds such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6), were quantitatively measured. The concentrations of siloxane compounds measured in the gas were in the range of 4.54- 7.36 ppmv, higher than those in landfill gas. The average removal efficiency of the odorous and volatile compounds in a wet scrubber was 67.37%. D4, D5, and D6, which are hydrophobic compounds, were also removed by as much as 50.68%, 44.56%, and 70.26%, respectively.
        60.
        2016.03 KCI 등재 서비스 종료(열람 제한)
        Since sewage sludge has low heating value as an energy source, it is desirable that sewage sludge is mixed with woody waste to enhance energy potential. Among thermal methods for waste to energy, carbonization process is used in this study. In order to estimate reaction kinetics for carbonization process using mixture of woody waste and sewage sludge, the content of sewage sludge is varied from 10 ~ 30% in mixture of woody waste and sewage sludge in carbonization process. Carbonization time is changed from 10 min to 50 min and carbonization temperature is varied from 250oC to 350oC. The carbonization process for mixture of woody waste and sewage sludge was optimized at carbonization temperature of 300oC for 20 min, 20% of sewage sludge content. As increased carbonization temperature, reaction rate constant, frequency factor and degree of carbonization were increased. As increased the content of sewage sludge, conversion, ash content and degree of carbonization were decreased. At optimal conditions for carbonization process, frequency factor and activation energy in Arrhenius equation can be decided by 3.61 × 10−2 min−1, 7,101.8 kcal/kmol respectively.
        1 2 3 4 5