This study estimates the classification criteria which distinguishes the types of omega-3 health functional foods, fish oils and fish oil usages through 13C-NMR spectra and fatty acids contents analysis. The major fatty acids of omega-3, eicosapentaenoic acid (EPA, C20:5) and docosahexaenoic acid (DHA, C22:6) are being analyzed. 10 ethyl ester (EE) forms and 10 triglyceride (TG) forms are the most common types of fish oils for 20 omega-3 products. Gas chromatography (GC) analysis generally shows the matching EPA and DHA contents of the products listed on the notation. But EE form contents of EPA and DHA are higher and are more varied than the TG form. Most of the samples of EPA/DHA ratio show different content ratios of indicated on the products when comparing with standards. The 13C-NMR analysis of EPA and DHA on sn-1,3 and sn-2 carbonyl peak position with fish oil triglycerides display whether the reconstituted triglycerides (rTG) are being confirmed or not. As a result of the 9 TG form, the 10 TG products showed similar values: EPA sn-1, 3; 13.46~15.66, sn-2; 3.00~4.52, DHA sn-1, 3; 2.43~4.40, sn-2; 3.84~6.36. But one product showed lower contents (EPA: sn-1, 3; 5.88, sn-2; 2.86, DHA sn-1, 3; 2.29, sn-2; 5.95) of EPA, thus it can be considered a different type of oil and only matched six products according to the label. This study is intended to provide basic materials which identify the status for the types and quality of omega-3 fish oil products according to fatty acids profiles and the 13C-NMR spectrum confirmed the location specificity of EPA and DHA.
All the triacylglycerols including the molecular species having δ5-unsaturated fatty acids from the seeds of Pinus Koraiensis, were split into a mixture of diacylglycerols by a Grignard reagent prepared with allyl bromide without arousing acyl chains of a glycerol moiety to migration, and were also easily partially hydrolyzed to diacylglycerols by pancreatic lipase. (S)-(+)-(1-naphthyl)ethyl urethane(NEU) derivatives of the diacylglycerol mixture derived from the triacylglycerols were fractionated into sn-1, 3-, sn-1, 2- and sn-2, 3-DG-NEU by silica-HPLC and the fatty acid composition of these fractions was analysed. C18:1Ω9 is distributed evenly in the three positions of TG with C18:2Ω6 mainly located in sn-2 position, while δ5-unsaturated fatty acids such as δ5.9-C18:2, δ5.9.12-C18:3 and δ5.11.14-C20:3 are exclusively present in the sn-3 position. These results could be confirmed by 13C-NMR spectroscopy : the signals at δ173.231 ppm and δ172.811 ppm of the carbonyl carbon of acyl moieties indicate the presence of saturated acids and/or C18:1Ω9 (oleic acid) in the α(α')- or β- positions, and C18:2Ω6 including C18:1Ω9 in the β-position, respectively. In addition, the resonance at δ173.044 ppm suggested a location of δ5-unsaturated fatty acid moiety in the α(α')-position.