Ohmic heating is a heating method based on the principle when an electrical current passes through food. Since this method is internal, electrical current damage occurred during heating treatment. The results of ohmic heated starch’s external structure, X-ray diffraction, DSC analysis and RVA were differed from those of conventional heating at the same temperature. Several starches changed more rigid by structure re-aggregation. This change in starch was caused by change of physical, chemical, rheological property. The rheology of ohmic heated potato and corn starch of different heated methods were compared with chemically modified starch. After gelatinization, sample starch suspension (2%, 3%) measured flow curves by rheometer. Cross-linked chemically modified starch’s shear stress was decreased with degree of substitution reversibly. Ohmic heated more dramatic, at 60℃. Potato starch’s shear stress was less than commercial high cross-linked modified starch. Flow curves of potato starches measured at 4℃, 10℃, 20℃. Showed that Ohmic heated potato starch’s shear stress ranging between 4℃ and 20℃ was narrower than modified starch. According to this study, ohmic heated potato starch can be used by decreasing viscosity agent like cross-linked modified starch.
Ohmic heating is an internal heating method based on the principle that when an electrical current passes through food, electric resistance heat is uniformly generated internally by food resistance. Previous studies indicate that the thermal properties, external structure, internal structure, and swelling power of ohmic heat treated starch of various starches, such as potato, wheat, corn, and sweet potato, differed from those of conventional heating at the same temperature.
In this study, the pasting property of starch, treated with ohmic and conventional heating, were measured by RVA (Rapid Visco-Analyzer). Our results show that as the ohmic heating temperature increased, the PV (Paste Viscosity) of the starch decreased significantly, and the PT (Pasting Temperature) increased. Changes in PV and PT indicate that the swelling of starch remains unchanged by ohm heating. The HPV (Hot Paste Viscosity), CPV (Cold Paste Viscosity) and SV (Setback Viscosity) of ohmic heated starch also differed from the conventional heated starch. The pasting property is similar to the viscosity curve of common cross-linked modified starch. In this experiment, we further confirm the similarity with modified starch and its usability.
Ohmic heating uses electric resistance heat which occurs equally and rapidly inside food when the electrical current is transmitted into. Prior to the study, we have researched the potato starch’s thermal property changes during ohmic heating. Comparing with conventional heating, the gelatinization temperature and the range of potato starch treated by ohmic heating are increased and narrowed respectively. This result is appeared equally at wheat, corn and sweet potato starch. At this study, we treated potato, wheat, corn and sweet potato starch by ohmic/conventional method and observed change of external structure by microscope and internal structure by X-ray diffractometer. Conventional heated at 55℃ potato starch was not external structural changes. But ohmic heated potato starch is showed largely change. Some small size starch particle were broken or small particles are made of larger particle together or small particles caught up in the large particle. Changes in ohmic heated potato starch at 60℃ was greater. The inner matter came to an external particle burst inside and only the husk has been observed. The same change was observed in the rest of the starch. The change of internal structure of potato starch was measured using X-ray diffraction patterns. There was no significant difference between ohmic and conventional heating at 55℃. But almost every peak has disappeared ohmic at 60℃. Especially 5.4° peak to represent the type B was completely gone. When viewed from the above results, external changes with change in the internal crystal structure of the starch particles were largely unknown to appear. In conclusion, during ohmic heating changes of starch due to the electric field with a change in temperature by the heating was found to have progressed at the same time.
Ohmic heating uses electric resistance heat which occurs equally and rapidly inside food when the electrical current is transmitted into. Prior to the study, we have researched the potato starch’s thermal property changes during ohmic heating. Comparing with conventional heating, the gelatinization temperature and the range of potato starch treated by ohmic heating are increased and narrowed respectively. Herein, we have studied thermal property changes of wheat, corn, potato and sweet potato starch by ohmic heating as well as conventional heating. And then we measure the water holding capacity of starches. Annealing of starch is a heat treatment method heated at 3~4% below the gelatinization point. This treatment changes the starch’s thermal property. In the DSC analysis of this study, the To, Tp, Tc of all starch levels have increased, and the Tc-To narrowed. In the ohmic heating, the treatment sample is extensively changed but not with the conventional heating. From the ohmic treatment, increases from gelatinization temperature are potato (8.3℃) > wheat (5.3℃) > corn (4.9℃) > sweet potato (4.5℃), and gelatinization ranges are potato (7.9℃), wheat (7.5℃), corn (6.1℃) and sweet potato (6.8℃). In the case of conventional treatment, water holding capacity is not changed with increasing temperature but the ohmic heating is increased. Water holding capacity is related to the degree of gelatinization for starch. This result show that when treated with below gelatinization temperature, the starches are partly gelatined by ohmic treatment. When viewing the results of the above, ohmic treatment is enhanced by heating and generating electric currents to the starch structure.
This study estimates the classification criteria which distinguishes the types of omega-3 health functional foods, fish oils and fish oil usages through 13C-NMR spectra and fatty acids contents analysis. The major fatty acids of omega-3, eicosapentaenoic acid (EPA, C20:5) and docosahexaenoic acid (DHA, C22:6) are being analyzed. 10 ethyl ester (EE) forms and 10 triglyceride (TG) forms are the most common types of fish oils for 20 omega-3 products. Gas chromatography (GC) analysis generally shows the matching EPA and DHA contents of the products listed on the notation. But EE form contents of EPA and DHA are higher and are more varied than the TG form. Most of the samples of EPA/DHA ratio show different content ratios of indicated on the products when comparing with standards. The 13C-NMR analysis of EPA and DHA on sn-1,3 and sn-2 carbonyl peak position with fish oil triglycerides display whether the reconstituted triglycerides (rTG) are being confirmed or not. As a result of the 9 TG form, the 10 TG products showed similar values: EPA sn-1, 3; 13.46~15.66, sn-2; 3.00~4.52, DHA sn-1, 3; 2.43~4.40, sn-2; 3.84~6.36. But one product showed lower contents (EPA: sn-1, 3; 5.88, sn-2; 2.86, DHA sn-1, 3; 2.29, sn-2; 5.95) of EPA, thus it can be considered a different type of oil and only matched six products according to the label. This study is intended to provide basic materials which identify the status for the types and quality of omega-3 fish oil products according to fatty acids profiles and the 13C-NMR spectrum confirmed the location specificity of EPA and DHA.
Ohmic heating uses electric resistance heat which occurs equally and rapidly inside of food when electrical current is flown into. In other study, we researched about soybean protein’s characteristic changes by ohmic heating. Nevertheless treated same temperature, denaturation of soybean protein were accelerated by ohmic heating than conventional heating. In this time, we studied thermal property change of potato starch by ohmic heating besides conventional heating. For this purpose, potato starch was heated at same subgelatinization temperature by ohmic and conventional heating. And thermal properties were tested using DSC. Annealing of starch is heat treatment method that heated at 3~4% below the gelatinization point. DSC analysis results of this study, the To, Tp, Tc of potato starch levels were increased, whereas Tc~To was narrowed. This thermal property changes appear similar to annealing’s result. It is thought the results shown in this study, because the heating from below the gelatinization point. 6, 12, 24, 72, and 120 hours heating at 55℃ for potato starch, To, Tp, Tc values continue to increased with heating time increase. The gelatinization temperature of raw potato starch was 65.9℃ and the treated starch by conventional heating at 55℃ for 120 hr was 72℃, ohmic was 76℃. The gelatinization range of conventional (72 hr) was 10℃, ohmic was 8℃. In case of 24 hours heating at 45, 50, 55, 60, 65℃ for potato starch, the result was similar to before. To, Tp, Tc values continue to increased and gelatinization range narrowed with heating temperature increase. In case of conventional heating at 60℃, the results of gelatinization temperature and range were 70.1℃ and 9.1℃. And ohmic were 74.4℃ and 7.5℃. When viewed through the results of the above, the internal structure of starch heated by ohmic heating was found that the shift to a more stable form and to increase the homology of the starch internal structure.
This study analyzes the structure types of salmon oil to evaluate the purity of salmon oil products based on the 38 different types of imported salmon oil products distributed in the Republic of Korea. The major types of omega-3 foods in the salmon oil are ethyl ester (EE) and triglyceride (TG). If the salmon oil contained potential contaminants and was processed in order to remove it, EE type omega-3 fatty acids are found in concentration. This provides a good guide in assessing if products were made with EE type ingredients or re-esterified contaminated materials. The results of the FT-IR analysis showed significant difference in the C=O, C-O band positions in TG and EE. There were 19 TG type products and 19 EE type products. The analysis of carbon isotope ratio was performed on the types of TG and EE. There were different properties in the 19 TG type products. In one product, the carbon isotope ratio was -25.15 and the other 18 products showed -22.15~-23.96. The carbon isotope ratio of all 19 EE type products showed -21.91~-23.74. The results of the TLC analysis showed similar results with FR-IR. The re-esterified TG form was not detected in the TG type products, confirming that the TG type products contained natural salmon oil. This study aimed to provide the basic material in classifying the types of natural salmon oil and re-esterified salmon oil, by analyzing the pattern and proportion of FT-IR spectrum, carbon isotope ratio, and TLC.
I assessed the B(a)P content from the Ginseng extract, Red ginseng extract, and Ssangwha extract which have high viscosities. It wasn`t easy to extract oil from these samples, consequently measuring of B(a)P was difficult. In order to know the exact detecting contents, I injected standard material of B(a)P to the above extractions and pre-treated for measurement but it was also difficult to measure of contents exactly. To improve of detecting method, I removed mucinous materials using a 85% phosphoric acid solution or 10% citric acid solution and then processed continuously with 60℃ hot water. The analysis revealed that extracting the samples contained B(a)P determined the rate of each 70%, 55%, 67% could increase. As a result the detecting method of B(a)P contents could be improved.
This study was devised to observe an inhibitory reaction toward an lipolytic action of toxohormone-L from KEUMSUNYEON powder. Toxohormone-L is known to be a lipolytic factor that was purified from the ascites fluid of sarcoma 180-bearing mice and of patients with hepatoma. KEUMSUNYEON powder was found to inhibit toxohormone-L induced lipolysis at its concentration of 0.5㎎/㎖.