검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study aimed to compare the object detection performance based on various analysis methods using point-cloud data collected from LiDAR sensors with the goal of contributing to safer road environments. The findings of this study provide essential information that enables automated vehicles to accurately perceive their surroundings and effectively avoid potential hazards. Furthermore, they serve as a foundation for LiDAR sensor application to traffic monitoring, thereby enabling the collection and analysis of real-time traffic data in road environments. METHODS : Object detection was performed using models based on different point-cloud processing methods using the KITTI dataset, which consists of real-world driving environment data. The models included PointPillars for the voxel-based approach, PartA2-Net for the point-based approach, and PV-RCNN for the point+voxel-based approach. The performance of each model was compared using the mean average precision (mAP) metric. RESULTS : While all models exhibited a strong performance, PV-RCNN achieved the highest performance across easy, moderate, and hard difficulty levels. PV-RCNN outperformed the other models in bounding box (Bbox), bird’s eye view (BEV), and 3D object detection tasks. These results highlight PV-RCNN's ability to maintain a high performance across diverse driving environments by combining the efficiency of the voxel-based method with the precision of the point-based method. These findings provide foundational insights not only for automated vehicles but also for traffic detection, enabling the accurate detection of various objects in complex road environments. In urban settings, models such as PV-RCNN may be more suitable, whereas in situations requiring real-time processing efficiency, the voxelbased PointPillars model could be advantageous. These findings offer important insights into the model that is best suited for specific scenarios. CONCLUSIONS : The findings of this study aid enhance the safety and reliability of automated driving systems by enabling vehicles to perceive their surroundings accurately and avoid potential hazards at an early stage. Furthermore, the use of LiDAR sensors for traffic monitoring is expected to optimize traffic flow by collecting and analyzing real-time traffic data from road environments.
        4,000원
        2.
        2024.03 구독 인증기관·개인회원 무료
        In the contemporary era, 3D printing technology has become widely utilized across diverse fields, including biomedicine, industrial design, manufacturing, food processing, aerospace, and construction engineering. The inherent advantages of automation, precision, and speed associated with 3D printing have progressively led to its incorporation into road engineering. Asphalt, a temperature-responsive material that softens at high temperatures and solidifies as it cools, presents distinctive challenges and opportunities in this context. For the effective implementation of 3D printing technology in road engineering, 3D printed asphalt (3DPA) must exhibit favorable performance and printability. This requires attributes such as good fluidity, extrudability, and buildability. Furthermore, materials utilizing 3DPA for crack repair should possess high viscosity, elasticity, toughness, superior high-temperature stability, and resistance to low-temperature cracking. These characteristics ultimately contribute to enhancing pavement longevity and ensuring worker safety.
        4.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        자율주행 시물레이터는 자율 주행을 시험하고 검증하는 일에 있어 현실에 비해 높은 비용 절감의 효과를 가 지고 오지만 높은 컴퓨터 연산량에 의해 많은 하드웨어 기기를 요구하게 된다. 게임을 이용하여 자율 주행에 필요한 학습 데이터를 획득하는 경우도 있다. 게임은 저비용 시뮬레이터로 활용되고 있지만 게임 외적인 특정 상황을 모의하기에도, 필요한 데이터 획득에도 제한적이다. 또 다른 방법으로 게임 엔진을 통한 가상 환경 모 의 연구가 수행되고 있다. 하지만 게임 엔진에서는 사용자가 직접 필요한 모델링을 해줘야 하기 때문에 개발 비용이 크게 작용된다. 특히, 3D LIDAR는 360도로 Ray를 쏴서 정밀 거리를 최소 10Hz 이내의 실시간 획득이 필요하다. 실시간으로 3D LIDAR 데이터를 획득하는 것은 GPU(Graphics Processing Unit) 사용량이 많은 작업 이기 때문에, 저비용 시뮬레이터를 위해서는 저비용 3D LIDAR 모의가 필요하다. 본 논문에서는 낮은 컴퓨터 연산을 사용하는 C++ 기반 3D LIDAR 모의 프레임 워크를 제안한다. 제안된 3D LIDAR는 다수의 언덕으로 이 루어진 비포장 Map에서 성능을 검증 하였으며, 성능 검증을 의해 본 논문에서 생성된 3D LIDAR로 간단한 LPP(Local Path Planning) 생성 방법도 소개한다. 제안된 3D LIDAR 프레임 워크는 저비용 실시간 모의가 필요 한 자율 주행 분야에 적극 활용되길 바란다.
        4,200원