Silicon carbide (SiC) has emerged as a promising material for next-generation power semiconductor materials, due to its high thermal conductivity and high critical electric field (~3 MV/cm) with a wide bandgap of 3.3 eV. This permits SiC devices to operate at lower on-resistance and higher breakdown voltage. However, to improve device performance, advanced research is still needed to reduce point defects in the SiC epitaxial layer. This work investigated the electrical characteristics and defect properties using DLTS analysis. Four deep level defects generated by the implantation process and during epitaxial layer growth were detected. Trap parameters such as energy level, capture-cross section, trap density were obtained from an Arrhenius plot. To investigate the impact of defects on the device, a 2D TCAD simulation was conducted using the same device structure, and the extracted defect parameters were added to confirm electrical characteristics. The degradation of device performance such as an increase in on-resistance by adding trap parameters was confirmed.
Silicon carbide (SiC) is a promising material for power device applications due to its wide band gap(3.26 eV for 4H-SiC), high critical electric field and excellent thermal conductivity. The Schottky barrier diodeis the representative high-power device that is currently available commercially. A field plate edge-terminated4H-SiC was fabricated using a lift-off process for opening the Schottky contacts. In this case, Ni/Ti dual-metalcontacts were unintentionally formed at the edge of the Schottky contacts and resulted in the degradation ofthe electrical properties of the diodes. The breakdown voltage and Schottky barrier height (SBH, ΦB) was 107V and 0.67eV, respectively. To form homogeneous single-metal Ni/4H-SiC Schottky contacts, a deposition andetching method was employed, and the electrical properties of the diodes were improved. The modified SBDsshowed enhanced electrical properties, as witnessed by a breakdown voltage of 635V, a Schottky barrier heightof ΦB=1.48eV, an ideality factor of n=1.04 (close to one), a forward voltage drop of VF=1.6V, a specific onresistance of Ron=2.1mΩ-cm2 and a power loss of PL=79.6Wcm-2.