The hydrogen embrittlement could lead to big damages in bolt/nut, fittings, especially, high pressure valve and high leak-proof valve and so on. Thus, special alloy, for instance, such as Monel and Inconel, is recently used to suppress the problems of hydrogen embrittlement in semiconductor facilities, FCEV(fuel cell electric vehicle) and hydrogen gas stations. The purpose of this study is to investigate the characteristics according to ratio change between drawing and extrusion of Monel material within elastic limit through numerical analysis. As the results, the possibility of plastic deformation in case of drawing was greater than that of extrusion. Consequently, the safety factor related to plastic deformation shows the results depending on the ratio change of force between drawing and extrusion.
We have studied the effect of C/Ti atomic ratio of TiCx (x=0.5, 0.75 and 1.0) raw powder on the properties of the Ti-Mo-WTiC sintered hard alloy. The decrease of C/Ti atomic ratio accelerated the densification in the sintering process. The hardness was remarkably improved up to 1350HV with decreasing the C/Ti atomic ratio because of increase of TiCx phase volume content and its fine dispersion. From the results of electro-chemical tests in acid and 3% NaCl solutions, it was obvious that every alloy had excellent corrosion resistance, which meant about 200 times better than that of WC-Co cemented carbide.
기계적합금화한 Al-8wt.%(Ti+Zr)합금의 열적안정성에 미치는 Zr첨가의 영향에 대하여 조사하였다. Ti에 대한 Zr의 첨가비가 증가함에 따라 고온에서 장시간 노출에 따른 합금의 경도감소가 저하되어 합금의 열적안정성이 향상된 결과를 나타내었는데 이는 TEM 관찰결과 분산입자의 조대화가 억제되었기 때문이었다. XRD, SAD 및 EDS 분석결과 이러한 분산입자들은 DO2+와 DO23구조를 갖는 Al3(Ti+Zr)삼원계 금속간화합물이었으며 특히 DO23Al3(Ti+Zr)은 Zr의 첨가비가 증가함에 따라 보다 작은 Al기지와의 격자간불일치도를 갖는 방향으로 격자상수가 변화하여 합금의 열적안정성 향상에 주된 기여를 한 것으로 생각된다