Discharge limits for nuclear power plant gaseous effluents are presented as dose constraints or on the basis of radioactivity or radioactivity concentration. Accordingly, the operator evaluates the amount of radioactive material discharged from a specific nuclear power plant to the environment and periodically reports them to regulators. Multi-step sampling and analysis and calculation are performed during the radioactivity evaluation process of radioactive effluent, and the uncertainty generated in each step causes the uncertainty of the final radioactivity. Considering that the purpose of evaluating radioactivity discharged from nuclear power plants to the environment is to verify the satisfaction of discharge limits and safety margins, it is necessary to accurately evaluate the discharged radioactivity as much as possible, understanding of the uncertainty contained in the reported value of radioactivity and efforts to reduce it. In this study, modelling of the radioactivity evaluation procedure in gaseous effluent discharged as batch mode from nuclear power plant has performed, a generalized framework was established to evaluate the uncertainty based on ISO/IEC Guide 98-3 (GUM: 1995) involved in the whole process, and the uncertainty contained in the calculated radioactivity of each radionuclide (group) was evaluated and its characteristics. In addition, through probabilistic evaluation, the actual probabilistic distribution and statistical characteristics of radioactive effluent releases reported as a single value were confirmed. As a result, the range of values expected to be included in the confidence level of approximately 95% of the distribution of values for radioactivity in a gaseous effluent discharged as a batch mode from nuclear power plant was calculated. And, the priority of each input parameter turned out to be (1) gaseous waste volume, (2) sample bottle volume, and (3) measured radioactivity of the sample. In addition, the probability distribution of the radioactivity was simulated by Monte Carlo method. As such, the mean, minimum, and maximum values in confidence level of 95% were obtained, and they were reasonably matched the calculated value within 5% deviation. It was shown that radioactivity to the environment, which has been reported as a single value, has a specific probabilistic distribution form.
The purpose of full system decontamination before decommissioning a nuclear power plant is to reduce radiation exposure of decommissioning workers and to reduce decommissioning waste. In general, full system decontamination removes the CRUD nuclides deposited on the inner surface of the reactor coolant system, chemical and volume control system, residual heat removal system, pressurizer, steam generator tube, etc. by chemical decontamination method. The full system decontamination process applied to Maine Yankee and Connecticut Yankee in the USA, Stade, Obrigheim, Unterweser, Nekawestheim Unit 1 in Germany, Mihama Unit 1 and 2 in Japan, Jose Cabrera Unit 1 in Spain, and Barseback Unit 1 and 2 in Sweden are HP/CORD UV, NP/CORD UV, and DfD. In this study, the quantity of 60Co radioactivity removal, metal removal, ion exchange resin and filter generation according to reactor power, surface area and volume of the full system decontamination flow path, and the decontamination process were compared and analyzed. In addition, the quantity of 60Co radioactivity removal by each nuclear power plant was compared and analyzed with the evaluation results of the 60CO radioactivity inventory of the Kori Unit 1 full system decontamination loops conducted by SAE-AN Enertech Corporation.
추출크로마토그래피법과 액체섬광계수법을 이용하여 고체 시료중의 와 방사능을 측정할 수 있는 분석법을 확립하고 연구로 2호기의 해체시 발생되는 방사화된 콘크리트 폐기물을 분석하였다. 침전법과 추출크로마토그래피법으로 화학분리를 하면, 경우 Fe의 화학적 회수율은 대부분의 시료에서 90%이상이었으나 Ni의 회수율은 43.6과 46.5%를 나타낸 시료가 있으며 나머지는 62% 이상을 나타내었다. Spiked 시료를 이용하여 분리과정과 액체섬광계수법의 과정을 확인한 결과 의 경우는 3.7% 오차내의, 의 경우는 0.7% 오차내의 결과가 얻어졌다. 연구로 2호기의 해체 콘크리트 시료중 방사능은 MDA이하의 값도 있으나 TC3시료의 경우는 362Bq/g의 값이 얻어졌다. 그리고 의 경우는 모든 시료에서 MDA이하 값이 얻어져 이 존재하지 않음을 알 수 있었다. 그리고 콘크리트 벽의 해체시 표면의 시료는 의 방사능이 높다가 표면으로부터 깊은 시료일수록 의 방사능이 급격히 줄어들었다.