Background: Foot drop is a common symptom in stroke patients. Tape applications are widely used to manage foot drop symptoms. Previous studies have evaluated the effects of static and dynamic balance and gait on foot drop using kinesiology tape; however, only few studies have used dynamic tape application in stroke patients with foot drop.
Objects: The purpose of this study was to investigate the immediate effects of dynamic taping, which facilitates the dorsiflexor muscle, on static and dynamic balance and gait speed in stroke patients with foot drop.
Methods: The study included 34 voluntary patients (17 men, 17 women) with stroke. The
patients were randomly assigned to the experimental group (n = 17), wherein dynamic taping
was used to facilitate the dorsiflexor muscle, or the control group (n = 17), wherein kinesiology
taping was used. Before the taping application, velocity average, path-length average,
Berg balance scale, and timed up and go test (TUG) were recorded to measure static and
dynamic balance, whereas the 10-meter walk test (10MWT) was used to measure gait speed.
After the taping application, these parameters were re-evaluated in both groups. Repeated
measure analysis of variance was used. Statistical significance levels were set to α = 0.05.
Results: Except for the 10MWT scores in the control group, significant differences were
noted in all the parameters measured for static and dynamic balance and gait speed between
the pre and post-test (p < 0.05). However, the parameters showed significant interaction effects
between group and time in the TUG and 10MWT (p < 0.01).
Conclusion: These results indicate that compared with kinesiology taping, dynamic taping
used in chronic stroke patients with foot drop had a more significant effect on dynamic balance
and gait speed.
The purpose of this study was to investigate the effects of active and passive postural perturbation on ankle dorsiflexor responses in stroke patients. The subjects consisted of 13 stroke patients. Using wireless electromyography, the patients’ ankle dorsiflexor muscle responses were measured under the following conditions: active dorsiflexion (AD), active perturbation (AP), and passive perturbation (PP). Tibialis anterior muscle activity increased most significantly during PP of the affected side (118.64±56.28). The most significant increase for the non-affected side was in AD (72.64±24.56). Tibialis anterior muscle activity was compared under each condition. The affected side showed significant differences between PP and AD and between PP and AP (p<.05). The non-affected side showed not significant differences between each condition. The ratios of tibialis anterior muscle activity under AP to that under AD were 1.00 on the affected side and .75 on the non-affected side and the difference was not significant (p>.05). The ratios of tibialis anterior muscle activity under PP to that under AD were 3.30 on the affected side and 1.14 on the non-affected side and the difference was significant (p<.05). Passive perturbation improved tibialis anterior muscle activity on the affected side, and training based on this approach may have the potential to improve the ankle dorsiflexion of people with stroke.