검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        1.
        2021.03 구독 인증기관 무료, 개인회원 유료
        Alpha-lipoic acid (ALA) is a naturally occurring antioxidant and has been previously used to treat diabetes and cardiovascular disease. However, the autophagy effects of ALA against oxidative stress-induced dopaminergic neuronal cell injury remain unclear. The aim of this study was to investigate the role of ALA in autophagy and apoptosis against oxidative stress in the SH-SY5Y human dopaminergic neuronal cell line. We examined SH-SY5Y phenotypes using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay (cell viability/proliferation), 4′,6-diamidino-2-phenylindole dihydrochloride nuclear staining, Live/Dead cell assay, cellular reactive oxygen species (ROS) assay, immunoblotting, and immunocytochemistry. Our data showed ALA attenuated hydrogen peroxide (H2O2)-induced ROS generation and cell death. ALA effectively suppressed Bax up-regulation and Bcl-2 and BclxL down-regulation. Furthermore, ALA increased the expression of the antioxidant enzyme, heme oxygenase-1. Moreover, the expression of Beclin-1 and LC-3 autophagy biomarkers was decreased by ALA in our cell model. Combined, these data suggest ALA protects human dopaminergic neuronal cells against H2O2-induced cell injury by inhibiting autophagy and apoptosis.
        4,000원
        2.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Natural products are vastly utilized as a source of chemotherapeutic agents for human cancers. Kochia scopraia is traditionally used for the cure of urological and dermatological diseases. Recently, methanol extract of Kochia scoparia (MEKS) has been shown to have anti-cancer activity to various human cancers. However, there is no report demonstrating the anti-cancer activity of MEKS in human mucoepidermoid carcinoma (MEC) cells. In this study, the authors studied the effects of MEKS on the cell proliferation and underlying mechanism in YD15 human MEC cells. MEKS decreased YD15 cell proliferation proven by trypan blue exclusion assay and induced apoptosis, evidenced by cell cycle analysis and western blotting. Autophagy induction by MEKS was verified by western blotting. In addition, MEKS regulated the expression of phosphorylated Akt, phosphorylated p38 and Nrf2 protein. This results can imply that MEKS might be a potential candidate for the treatment of human MEC cells.
        4,000원
        3.
        2016.10 구독 인증기관·개인회원 무료
        α-solanine is toxic to human health by disturbing digestive and central nervous systems. However, little information has been focused on investigated with respect to α-solanine influence in mammal oocyte maturation and quality. In this study, we investigated the effects of α-solanine on oocyte maturation, quality and possible molecular mechanisms in a pig model. Porcine Cumulus-oocyte complexes (COCs) were treated with increasing concentration (0, 1, 10, 20, 50 μM) of α-solanine subjected to further in vitro maturation culture. The result showed that α-solanine significantly inhibited cumulus cells expansion and increased oocyte death rates when the concentration of α-solanine more than 10 μM. After cell cycle and cytoskeleton analysis, the results showed that α-solanine (10 μM) disturbed meiotic resumption, increased abnormal spindle formation and cortical granules (CGs) distribution rates when compared with the untreated group. α-solanine (10 μM) triggered autophagy by increasing the expression of autophagy-related genes (LC3, ATG7, LAMP2) and accumulation of LC3-specific puncta (an autophagy maker). TUNEL staining assay showed that α-solanine significantly increased apoptosis in porcine oocytes confirmed by up-regulated the levels of BAX and CAPS3 genes. Further study revealed that exposure α-solanine (10 μM) to porcine oocytes induced ROS generation, reduced mitochondrial membrane potential. In addition, our results suggested that α-solanine (10 μM) significantly increased the levels of H3K36me3 and H3K27me3 in porcine oocytes. Taken together, these data indicated that α-solanine toxic impaired oocyte maturation and quality by inhibited cumulus cells expansion, increased abnormal spindle and CGs distribution rates, triggered autophagy/apoptosis occur, accumulated ROS, decreased mitochondrial membrane potential, and changed epigenetic modifications.
        4.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cinnamaldehyde is known to have the antitumor effects in vitro and in vivo. In this study, we showed a potent and irreversible cytotoxic activity of the Cinnamaldehyde derivative 2'-benzoyloxycinnamaldehyde (BCA) in human Squamous oral cell carcinoma cell, YD-10B. BCA induced YD-10B cell apoptosis in a dose-responsive manner. BCA-induced apoptosis was associated with corresponding increases in a series of key components in the mitochondria-mediated apoptosis pathways, followed by caspase cleavage and PARP activation. We also observed that BCA induced autophagy through Akt/mTOR pathway in YD-10B cells. BCA treatment increased LC3B-II expression, and induced the formation of autophagosomes and autophagic vacuoles. These experimental findings suggest that BCA is a potent inhibitor of cell proliferation in YD-10B cells and provide new insights about leading to the possible development of a new therapeutic agent.
        4,000원
        5.
        2013.06 구독 인증기관 무료, 개인회원 유료
        The objective of this study was to examine the effects of high concentrations of glucose on porcine parthenotes developing in vitro. Addition of 55 mM glucose to the culture medium of embryos at the four-cell-stage significantly inhibited blastocyst formation, resulting in fewer cells in blastocyst-stage embryos and increased levels of apoptosis and autophagy compared to control. Quantitative reverse transcriptase (RT) PCR analysis revealed that the expression of pro-apoptotic genes (Caspase 3, Bax and Bak) and autophagy genes (Atg6 and Atg8/Lc3) were increased significantly by the addition of 55 mM glucose to the culture medium compared to control. MitoTracker Green fluorescence revealed a decrease in the overall mitochondrial mass compared to control. However, the addition of 55 mM glucose had no effect on mRNA expression of the nuclear DNA-encoded mitochondrial-related genes, cytochrome oxidase (Cox) 5a, Cox5b and Cox6b1. These results suggest that hyperglycemia reduced the mitochondrial content of porcine embryos developing in vitro and that this may hinder embryonic development to the blastocyst stage and embryo quality by increasing apoptosis and autophagy in these embryos.
        4,000원
        6.
        2012.06 구독 인증기관·개인회원 무료
        The purpose of this thesis is to examine the effect of hormone treatment in blastocyst development of in vitro cultured porcine oocyte. Oocytes used in the study was matured in vitro in the presence of 10% FBS or 10% pFF, and treated with FSH, LH or FSH+ LH, and the rate of blastocyst development was assessed based on the expression of autophagic genes. There was no significant differences in blastocyst development between oocytes maturaed in 10% FBS or 10% pFF. In vitro matured oocytes treated with FSH+LH showed blastocyst development rate as high as that of untreated oocytes, while groups treated with LH only showed a decrease in blastocyst development. About the expression of cell death assosiated factors, mRNA levels of autophagy and apoptosis genes were increased in oocytes matured in 10% FBS and treated with LH. Oocytes that did not receive hormone treatment showed low expression of most cell death genes except ATG5. When oocytes were matured in 10% pFF, ATG5 expression was the highest in FSH treated group, while LC3 showed strong expression in all hormone treated groups. On the other hand, the expression level of mTOR and caspase-3 did not show significant differences between groups. We also examined the protein level of apoptotic genes in the blastocyst. The amount of caspase-3 protein was similar between groups matured in 10% FBS and 10% pFF, but was the highest when treated with LH. Blastocysts treated with FSH and FSH+LH showed similar level of caspase-3 protein, while the level was the lowest when hormone treatment was not given. Within the blastocyst, caspase-3 was mostly expressed in trophoblast cells when matured in 10% FBS, while maturation in 10% pFF caused expression of this protein in the inner cell mass (ICM). Expression of MAP1LC3A was higher in groups matured in 10% pFF than groups matured in 10% FBS in all types of hormone treatment. Among the blastocysts matured in 10% pFF, MAP1LC3A level increased in the order of untreated < FSH < FSH+ LH. Expression of MAP1LC3A within the FBS-matured blastocyst was concentrated to the trophoblast, while pFF-matured blastocyst showed expression in both trophoblast and ICM. The expression of mTOR showed a pattern opposite to that of MAP1LC3A. That is, its expression was the lowest in 10% FBS group without hormone treatment. In both FBS and pFF group, and in all three combinations of hormone treatment, mTOR expression was ovserved mostly in ICM. Together, these results indicated that hormone treatments tend to induce expression of genes associated with programmed cell death. We suggest that proper induction of programmed cell death by FSH and LH treatment would increase the rate of blastocyst development. * This work was supported by BioGreen 21 Program (No. PJ008029). Rural Development Administation, Republic of Korea.
        7.
        2012.06 구독 인증기관·개인회원 무료
        There are diverse methods of cryopreservation of mammalian embryos with variable degrees of success. Although cryopreservation technique of mammalian embryos has been advanced, freezing stress affect to cellular event such as apoptosis and autophage in embryos. The objective of the study is to investigate the affection of to survival, development, live offspring, apoptosis and autophagy on embryo. Mouse embryos were vitrified and thawed using normal straw and modified cut standard straw (M-CSS), then in vitro cultured until blastocyst stage and transferred to recipient. Recovery rates (100 vs 99.2%), survival rates (99.2 vs 78.6%), developmental rates (18.4 vs 10.7%), total cell numbers (45 vs 37), preganacy rates (34.5 vs 25%) and offspring numbers (10.1 vs 4.9 %) of M-CSS group are significantly higher than those of normal straw vitrified group. Also, rate of apoptosis in blastocysts developed using M-CSS (1.9%) was significantly lower than using normal straw vitrification (2.7%). Apoptosis-related gene, caspase 3, was expressed at the highest level in blastocysts derived from normal straw group. However, no differences of autophagy related gene, Atg6 and expression of LC3 between normal straw and M-CSS groups were observed. In conclusion, the standard vitrification procedure induces mitochondrial apoptosis in zygotes in an autophagy-independent manner, whereas the novel M-CSS procedure may improve embryo vitrification.
        12.
        2010.09 서비스 종료(열람 제한)
        Mitochondria are important regulators of both apoptosis and autophagy. One of the triggers for mitochondrial-mediated apoptosis is the production of reactive oxygen species (ROS), which include hydrogen peroxide, superoxide, hydroxyl radical, nitric oxide, and peroxynitrite. Recently, several studies have indicated that ROS may also be involved in the induction of autophagy. In the present study, we used H2O2 to induce mitochondrial stress and examined apoptotic- and autophagic-related gene expression and observed LC3 protein (autophagosome presence marker) expression in porcine parthenotes developing in vitro. In porcine four-cell parthenotes cultured for 5 days in NCSU37 medium containing 0.4% BSA, the developmental rate and mitochondrial distribution did not differ from that of the group supplemented with 100 μM H2O2 but significantly decreased in the group supplemented with 500 μM H2O2 (P<0.05). Transmission electron microscopy (TEM) indicated that whereas normal shaped mitochondria were observed in blastocysts from the control group, abnormal mitochondria (mitophagy) and autophagic vacuoles were observed in blastocysts from the group that received 500 μM H2O2. Furthermore, addition of H2O2 (100 μM and 500 μM) decreased cell numbers (P<0.05) and increased both apoptosis (P<0.05) and LC3 protein expression in the blastocysts. Real time RT-PCR showed that H2O2 significantly decreased mRNA expression of anti-apoptotic gene Bcl-xL but increased pro-apoptotic genes, Caspase 3 (Casp3) and Bak, and autophagy-related genes, microtubule-associated protein 1 light chain 3 (Map1lc3b) and lysosomal-associated membrane protein 2 (Lamp2). However, the addition of H2O2 had no effect on mRNA expression levels in nuclear DNA-encoded mitochondrial-related genes, cytochrome oxidase (Cox) 5a, Cox5b, and Cox6b1, but decreased mitochondrial DNA-encoded genes, D-loop (Dloop) and cytochrome b (Cytb), in blastocysts. These results suggest that H2O2 leads to mitochondrial dysfunction that results in apoptosis and autophagy, which is possibly related to porcine early embryo development.