Molecular mimicry is the most common mechanism that breaches self-tolerance. We previously identified autoantibodies to aquaporin-5 (AQP5) in the sera of patients with Sjögren’s syndrome and found that the aquaporin of Prevotella melaninogenica (PmAqp), an oral commensal, is highly homologous to human AQP5. This study aimed to test whether PmAqp can induce anti-AQP5 autoantibodies via molecular mimicry. From the amino acid sequence of PmAqp, an immunizing peptide; i.e., PmE-L, was designed, which contained both the B cell epitope “E” and T cell epitope. C57BL/6 and BALB/c mice were subcutaneously immunized with linear or cyclic forms of PmE-L emulsified in incomplete Freund’s adjuvant. The concentrations of the antibodies in sera were measured using enzymelinked immunosorbent assays. Both linear and cyclic PmE-L induced high levels of antibodies against not only the immunized peptides but also autoantibodies against AQP5E and antibodies against PmE, a Pm homolog of AQP5E. In C57BL/6 mice; however, the cyclic form of PmE-L was more efficient than the linear form in inducing autoantibodies against AQP5E that contained a cyclic epitope. The levels of anti-PmE antibodies and anti-AQP5E autoantibodies showed a strong positive correlation (r = 0.95, p < 0.0005), suggesting molecular mimicry. Collectively, the mice produced anti-AQP5E autoantibodies in response to a PmAqp-derived peptide. This model proved to be useful for studying the mechanisms of autoantibody production by molecular mimicry.
Alcohol intake is known to affect various organs in the human body, causing reduction of salivation in the oral cavity. Hypo-salivation effect of alcohol is a common feature, but the mechanism in salivary glands is still poorly studied. Therefore, in this study, the changes in salivary secretion and water channel protein (aquaporin5, AQP5) in salivary glands of mice were investigated after ethanol administration. Animals were divided in to 4 groups with the control, 4 g/kg ethanol, 8 g/kg ethanol and 16 g/kg ethanol administration groups. One hour after ethanol administration, saliva was collected from the oral cavity, and the animals were killed and parotid and submandibular glands were extracted to analyze the histopathology, AQP5 immunihistochemistry and AQP5 protein level. According to the results, the salivation rate decreased irrespective of the ethanol dose in mice, and viscosities increased with increase in ethanol dose. However, there were no pathological changes in parotid and submandibular glands due to ethanol administration. Expression of AQP5 in parotid and submandibular glands decreased with increase ethanol administration These results indicate that the reduction of salivary secretion due to acute alcohol intake is closely related to decrease of the water channel protein such as AQP5 in parotid glands and submandibular glands, rather than the damage of salivary glands.
Adaptive development of early stage embryo is well established and recently it is explored that the mammalian embryos also have adaptive ability to the stressful environment. However, the mechanisms are largely unknown. In this study, to evaluate the possible role of aquaporin in early embryo developmental adaptation, the expression of aquaporin (AQP) 5 gene which is detected during early development were examined by the environmental condition. To compare expression patterns between in vivo and in vitro, we conducted quantitative RT-PCR and analyzed localization of the AQP5 by whole mount immunofluorescence. At in vivo condition, Aqp5 expressed in oocyte and in all the stages of preimplantation embryo. It showed peak at 2-cell stage and decreased continuously until morula stage. At in vitro condition, Aqp5 expression pattern was similar with in vivo embryos. It expressed both at embryonic genome activation phase and second mid-preimplantation gene activation phase, but the fold changes were modified between in vivo embryos and in vitro embryos. During in vivo development, AQP5 was mainly localized in apical membrane of blastomeres of 4-cell and 8-cell stage embryos, and then it was localized in cytoplasm. However, the main localization area of AQP5 was dramatically shifted after 8-cell stage from cytoplasm to nucleus by in vitro development. Those results explore the modification of Aqp5 expression levels and location of its final products by in vitro culture. It suggests that expression of Aqp5 and the roles of AQP5 in homeostasis can be modulated by in vitro culture, and that early stage embryos can develop successfully by themselves adapting to their condition through modulation of the specific gene expression and localization.
Water channel proteins, aquaporins (AQPs) contribute to transepithelial water movement in many tissues. To date, 13 mammalian AQPs have been identified. Of these, AQP5 plays an important role in the fluid homeostasis and cell volume control in epithelial cells. In an effort to understand the role of AQP5 in testis, we investigated the expression of AQP5 in developing mouse testis, its regulation by estrogen and LH, and the change of steroidogenesis by AQP5 knockdown. Testes and Leydig cells were isolated from male mice at postnatal day (PND) 1, 7, 14, 28, and 56 and estrogen receptor alpha knockout (ERαKO) mice. In mouse testis, AQP5 immunoreactivity was negligible by PND 14. From PND 28 onward, AQP5 immunoreactivity was found in Leydig cells. In ERαKO mouse Leydig cells, AQP5 mRNA level was significantly lower than wild type. In primary adult Leydig cell culture, the expression of AQP5 mRNA was increased by 17β-estradiol (E2) and human chorionic gonadotropin (hCG), but was not changed in ERαKO Leydig cells. Moreover, the expression of AQP5 mRNA was increased by E2 and ERα-selective agonist PPT, but was not changed by ERβ-selective agonist DPN in primary Leydig cells and mLTC-1. In silico analysis and chromatin immunoprecipitation (ChIP) assay revealed that there are putative estrogen response elements (EREs) and cAMP response elements (CRE) in AQP5 promoter region. Testosterone secretion and steroidogenic pathway genes (StAR, Cyp11a1, Cyp17a1, and 3β-HSD6) expression were decreased by AQP5 siRNA in primary Leydig cells. In conclusion, AQP5 expression was coupled with functional differentiation of adult Leydig cells. AQP5 may play an important role in the fluid homeostasis and cell volume control during development of adult Leydig cells. The expression of AQP5 in Leydig cells could be regulated by ERα and LH signaling and AQP5 may be involved in steroidogenesis.
Aquaporin5 (AQP5), a water channel plays an important role in the fluid homeostasis and cell volume control in epithelial cells. In an effort to understand fluid homeostasis in the oviduct, tissue specific expression of AQP 5 was examined together with hormonal regulation of AQP5 in the mouse oviduct. To understand the oviductal fluid homeostasis and its regulation by sex steroids, We examined AQP5 expression in mouse oviduct during developmental stage and estrous cycle, and in estrogen receptor α (ERα) knockout mice oviduct. In immature mouse oviduct, expression of AQP5 expression was examined after stimulation with gonadotropins. The effect of ERα agonist (PPT) and ERβ agonist (DPN) on the oviductal expression of AQP5 was examined in ovariectomized mouse. All samples were subjected to realtime-PCR and immunohistochemistry analysis. In oviduct epithelium, AQP5 was largely found in the apicolateral membrane and cytoplasm of ERα-positive non-ciliated cells but weakly expressed in the ciliated cells. Interstitial cells, muscle cells and blood vessels were also weakly positive for AQP5 immunoreactivity. In cyclic female mice oviductal AQP5 mRNA levels were the highest at estrous. In immature mouse oviduct AQP5 mRNA and epithelial immunoreactivity were increased by PMSG, and followed by a decrease after hCG. In ERα KO mice oviduct, AQP5 mRNA levels were significantly lower than those of WT females at diestrous stage. In immature and OVX mouse oviducts, AQP5 mRNA and epithelial immunoreactivity were significantly increased by E2 and PPT. Together, our results suggest the pivotal role of AQP5 in fluid secretion and absorption of water in non-ciliated cells in oviduct. AQP5 gene is tightly activated by estrogen – ERα signaling in non-ciliated cells in oviductal epithelium, mediating the effect of estrogen on gamete transport, fertilization and early embryo development via regulating the fluid homeostasis in oviduct.
Aquaporin 5 (AQP5) implicated in the generation of saliva, tears, and pulmonary secretions functions as a water-specific channel. Epididymal epithelial cells actively reabsorb water, ions and proteins. Large quantity of testicular fluid movement across the epididymal tubules generates high osmotic milieu which is important for sperm maturation. In an effort to understand the fluid homeostasis and its regulation by sex steroids in male reproductive tract, the expression of AQP5 was examined in different regions of mouse epididymis during postnatal development. The effect of androgen on the expression of epididymal AQP5 was examined in ORX model. AQP5 mRNA levels were the highest in corpus region in which drastic increase was noted during sexual maturation. Epididymal AQP5 immunoreactivity was largely found in apical as well as basal region of luminal epithelia. Moderate immunoreactivity for AQP5 was found in in smooth muscle cells in both immature and mature mice. Epididymal lumen of ORX mice showed shrinkage together with decrease in AQP5 expression. Alteration of AQP5 expression in ORX epididymis was partially recovered by androgen injection. AQP5 mRNA was induced at 10uM 5α-DHT in organ cultured epididymis. Chromatin immunoprecipitatin (ChIP) showed that 5α-DHT induced recruitment of androgen receptor (AR) to the -4635 to -4453 bp region of the AQP5 gene promoter in adult epididymis. Taken together, axial regulatory mechanism may control transcription of AQP5 along the length of epididymal tubule. Water transport through AQP5 is important for late sperm maturation and storage in epididymis. Androgen may directly induce AQP5 gene transcription via activation of AR in epididymis.
Aquaporins (AQPs)는 다양한 상피세포와 내피세포에 존재하며 다량의 물 수송을 촉진하는 막성단백질로 현재 11개의 AQP가 (AQP0-10) 발견되었으나, 아직 생리적, 기능적 분석은 불충분한 상태이다. 생쥐의 자궁내막은 발정주기 동안 호르몬의 자극에 따라 부풀어오르거나 수축하는 변화를 보이며 에스트로젠과 몇몇 혈관에 작용하는 매개체에 의해 자궁 혈관의 투수성이 증가한다는 보고는 있으나, 자궁액의 수송 메커니즘에 대해서는 뚜렷하게 밝혀진 바가