New e-navigation strains require new technologies, new infrastructures and new organizational structures on bridge, on shore as well as in the cloud. Suitable engineering and safety/risk assessment methods facilitate these efforts. Understanding maritime transportation as a sociotechnical system allows the application of system-engineering methods. Formal, simulation based and in situ verification and validation of e-navigation technologies are important methods to obtain system safety and reliability. The modelling and simulation toolset HAGGIS provides methods for system specification and formal risk analysis. It provides a modelling framework for processes, fault trees and generic hazard specification and a physical world and maritime traffic simulation system. HAGGIS is accompanied by the physical test bed LABSKAUS which implements a physical test bed. The test bed provides reference ports and waterways in combination with an experimental Vessel Traffic Services (VTS) system and a mobile integrated bridge: This enables in situ experiments for technological evaluation, testing, ground research and demonstration. This paper describes an integrated seamless approach for developing new e-navigation technologies starting with simulation based assessment and ending in physical real world demonstrations.
It is well known that simulation study in the preliminary design stage of harbors or berths is of great use, since it can provide helpful informations to the designer from the view point of ship navigations. In this paper, a brief review is made in the safety assessment of ship navigation for a 320,000 DWT VLCC entering Yecocheon harbor area, which is carried out by shiphandling simulator system. The geographic data base for the harbor as well as the mathematical models of the ship and environmental effects are designed and developed. Based in the on-site inspections and interviews with pilots in Yeocheon area, basic maneuvering plans and consistence with real operation conditions. Berthing and deberthing maneuvering simulations as well as approaching and departing simulations are carried out by 3 experienced navigators according to the maneuvering plans and environmental scenarios. The simulation results are analysed in various ways to evaluate the quantitative and qualitative maneuvering difficulties and thereby to assess the safety of ship navigation in that area.