In this paper, we analyze the scientific inquiries type on Almanac and Historical Astronomy asked through the Q&A service in Korea Astronomy and Science Institute(KASI) webpage with the aid of scientific inquiries analysis methods. We also study the contents of the questions. Specifically, we have created statistics of questions and inquiries, and have developed categories to analyze the characteristics of questions with regard to their cognitive aspects. Each question is categorized as either of the two elements based on their recognitive aspect: science knowledge or science study. Each element also has sub-categories that help the reader understand the characteristics of the questions. For the analysis, we used the sample consisting of questions collected from April, 2005 to June, 2007. Through this study, we achieved a better understanding of the questions in the area of Almanac and Historical Astronomy asked in the Q&A service. Throughout this study, we find that the need of questions in the area of Almanac and Historical Astronomy are increasing with time, and the overall quality of the questions is getting improved. As we expect that the number of people using our Q&A service will increase and that the questions will get more difficult to answer, development of improved contents is required.
Current searches for gravitational microlensing events are being carried out only by a photometric method. In this review paper, we demonstrate that the nature of Galactic lenses can be significantly better constrained with the additional astrometric observations of microlensng events. First, by astromerically observing lensing events, one can resolve the lens parameter degeneracy, and thus the lens mass can be determined with improved precision. Second, by being free from the blending problem, astrometric observations of lensing events will allow one to improve the uncertainties in the determined Einstein time scales. Third, the lens brightness, which could not be measured photometrically, can be measured from the astrometric observations of lensing events, and thus the nature of lens matter can be better constrained. Finally, with the help of astrometric followup observations of a binary-lens event, one can uniquely determine the solution of lens parameters, allowing one to obtain important astronomical information about the source star and the lens itself.