Aujeszky's disease (AD), also called pseudorabies, is an infectious viral disease caused by an alpha herpes virus and has domestic and wild pigs, as well as a wide range of domestic and wild animals, as the natural host. Aujeszky's disease virus (ADV) virions contain several envelope glycoproteins. Among them, glycoproteins gB, gC and gD are regarded as the major immunogenicity proteins and the antibodies induced by them can neutralize virus in vitro or in vivo. In this study, we investigated expression of these glycoproteins using the bacterial and baculovirus expressionn system. Successful expression of ADV glycoproteins in E. coli was confirmed by SDS-PAGE and Western blot analysis and their optimal expression condition was determined. However, the recombinant proteins generated in the bacterial expression system which lacks glycosylation process frequently lose their biological activity. We tried to express the ADV glycoproteins using the baculovirus expression vector system. The recombinant gB, gC and gD were detected at approximately 100, 60 and 50 kDa on SDS-PAGE and Western blotting, respectively. The optimal expression conditions were determined for MOI(multiplicity of infection) and post-infection days. One MOI and 4 or 5 days post-infection were the best conditions for the expression of the ADV glycoproteins in Sf21 cells. We are currently investigating the antigenicity of recombinant proteins using experimental animals.
Aujeszky’s disease (AD), also called pseudorabies, is an infectious viral disease, caused by an alpha herpes virus and has domestic and wild pigs, as well as a wide range of domestic and wild animals, as the natural host. AD affects many countries and regions in the world, causing important economic losses, mainly due to international trade restrictions. In this study, to determine the characteristics of the Aujeszky’s disease virus (ADV), NYJ strain, which was isolated from the serum of an infected pig in 1987, we investigated the nucleotide sequence and expression of the glycoproteins gB, gC, and gD using the bBpGOZA system. We found that the glycoproteins gB, gC, and gD of NYJ consisted of 2751 bp, 1443 bp, and 1203 bp, respectively. Comparison of the NYJ with the other strains revealed nucleotide sequence identity ranging from 91.tito 99.0%. To better understand the genetic relationships between other strains, phylogenetic analyses were performed. The NYJ strain was formed a distinct branch with high bootstrap support. The expression of glycoprotein gD in insect cells was characterized by SDS-PAGE and Western blotting with an anti-ADV polyclonal antibody. Glycoprotein gD of approximately 45 kDa was detected. The results of this study have implications for both the taxonomy of ADV and vaccine development.