In this study, a lower heating value for automobile shredder residue incineration facilities (12 facilities) was calculated using a heat balance method, and a recoverable energy potential was calculated after calculating the effective energy output and the effective energy use according to automobile shredder residue incineration. An analysis of the calculation results showed that the effective output and the effective use had average values of 64.5% (49.8-80.2%) and 31.3% (7.1-57.5%) in an ASR incineration plant, respectively. The calculated ratio of effective use to effective output was an average value of 33.2% (3.0-57.8%). Therefore, in order to improve the efficiency of effective energy used, it is necessary to make more effort to devise various measures.
There have been a lot of efforts to increase recycling rate by more utilization of end of life vehicles (ELVs) in Korea.The target of recycling rate was set to 85% until 2014 and 95% after 2015 with including up to 10% of energy recovery,according to the law of “regulation about resource recycling of electrical and electronic products and automobiles”.Therefore, to achieve 95% of recycling rate by the year of 2015, the automobile and recycling industries should developan innovative technology to treat automobile shredder residues (ASRs) by efficient means of reduction or conversion toenergy, which were generated as final left-over after recovering all the valuables from ELVs. As one of the options toconvert to energy forms, the gasification of them was proposed. In this study the gasification experiment was performedusing ASRs at fixed-bed reactor with a capacity of 1kg/hr, at different temperatures of 800, 1,000 and 1,200oC, and atequivalence air ratios ranging from 0.1 to 0.5. The syngas (H2+CO) yield from ASR gasification experiment was obtainedup to 86% in maximum and about 40% in minimum in the experimental conditions given. There was a trend that theamount of syngas increased with elevated temperatures and the calorific value also showed similar trend with syngasproduction.
Recently, the recycling of end-of-life vehicles is becoming increasingly interesting for less waste discharge and recovering useful materials such as valuable metals. Hence, in Korea, the target of the recycling rate is made to 85% until 2014 (energy recovery within 5%) and the recycling rate to 95% after 2015 (energy recovery within 10%) according to the law of "regulation about resource recycling of electrical and electronic products and automobiles". However, the recycling rate is around 84% in 2010, and registered numbers of shredder residue recyclers among dismantling recyclers, crushing recyclers, shredder residue recyclers, and waste gases recyclers are very few. In order to meet the goal of 85% until 2014, Korean recycling industry of ASR should grow bigger and innovative recycling technologies have to be developed as well. In the meantime, a recycling technology of automobile shredder residue is developed in the present study, in which ASR is introduced to a copper smelting process. This process is very promising because of co-beneficial effects such as recovering copper and process heat simultaneously from ASR. In this study, lab-scale melting furnace was developed and melting tests for various ASR were carried out. From the results, the physicochemical characteristics of Korean ASR were analyzed and its melting behavior was investigated for the application to the copper smelting process. In particular, melted slag products were fabricated at different melting temperatures. Then, the basicity and pouring index in the lab-scale melting furnace were examined to find out appropriate operating conditions for the melting process. As a result, Because the amount of lump coal that included in existing process samples is a little, melting state and value of pouring index are very similar to existing process samples. In result of this experiment, in case of changing lump coal to ASR, The existing copper smelting facilities, if basicity and melting temperature are well controlled, flow of melting material is considered that is almost not affected.