The need for the development of sustainable, efficient, and green radioactive waste disposal methods is emerging with the saturation of spent nuclear waste storage facilities in the Republic of Korea. Conventional radioactive waste management methods like using cement or glass have drawbacks such as high porosity, less chemical stability, high energy consumption, carbon dioxide production, and the generation of secondary wastes, etc. To address this gigantic issue of the planet, we have designed a study to explore the potential of alternative materials having easy processability, low carbon emissions and more chemical stability such as ceramic (hydroxyapatite, HAP) and alkali-activated materials (geopolymers, GP) to capture the simulated radioactive cobalt ions from the contaminated water and directly solidify them at low temperatures. Physical and mechanical properties of HAP alone and 15wt% GP incorporated HAP (HAP-GP- 15) composite were studied and compared. The surface of both materials was fully sorbed with an excess amount of Co(II) ions in the aqueous system. Co(II) sorbed powders were separated from aqueous media using a centrifuge machine operating at 5,000 RPM for 10 minutes and dried at 100°C for 8 hours. The dried powders were then placed in stainless steel molds, and shaped into cylindrical pellets using a uniaxial press at a pressure of 1 metric ton for 1 minute. The pellets were sintered at 1,100°C for 2 hours at a heating rate of 10°C/min. Following this, the water absorption, density, porosity, and compressive strength of the polished pellets were measured using standard methods. Results showed that HAP has a greater potential for decontamination and solidification of Co(II) due to its higher density (2.65 g/cm3 > 1.90 g/cm3), less open porosity (16.2±2.9% < 42.4 ±0.9%) and high compressive strength (82.1±10.2 MPa > 6.9±0.8 MPa) values at 1,100°C compared to that of HAP-GP-15. Nevertheless, further study with different constituent ratio of HAP and GP at various temperatures is required to fully optimize the HAP-GP matrix for waste solidifications.
A comprehensive understanding of actinide coordination chemistry and its structure is essential in many aspects of the nuclear fuel cycle, such as fuel reprocessing, waste management, reactor safety, and non-proliferation efforts. Managing radioactive waste generated during the nuclear fuel cycle has recently become more important, accordingly increasing the importance of designing appropriate waste forms and storage solutions for long-term waste disposal. Compared to the increase in the need for understanding the chemistry of major radioactive elements, the information on the local structure of the radioactive elements, especially actinides, remains unknown. To probe this issue, X-ray absorption fine structure (XAFS) can be applied. By analyzing the EXAFS (extended X-ray absorption fine structure) and XANES (X-ray absorption near edge structure), the local structure around atoms can be determined. However, the radioactive properties of the nuclides hindered the measurement of EXAFS and XANES, due to the difficulties of preparation, containment, and transfer of the sample. To measure the EXAFS of various compounds regarding the back-end nuclear fuel cycle, laboratory-based EXAFS (hiXAS, HP spectroscopy) has been introduced which can measure the EXAFS and XANES at the energy range of 5-18 keV. Compounds of Copper (Cu foil, CuO samples), Zirconium (Zr foil), and Europium (Eu2O3) were used for the verification of the laboratory -based EXAFS at a given energy range. The measured EXAFS spectrum of various compounds exhibit good agreement with the theoretical data, showing an R-factor of less than 0.02. It was found that each graph has a first peak corresponding to 2.55Å for Cu foil (Cu-Cu), 1.93Å for CuO samples (Cu-O), 3.23Å for Zr foil (Zr-Zr), and from 2.32Å to 2.34Å for Eu2O3 (Eu-O), which agree well with other values from the literature. From the result, it can be implied that this equipment can be used especially in the back-end nuclear fuel cycle field to enhance the understanding of local structure in radiochemistry.
Molten chloride salts have received considerable research attention as potential nuclear fuel and coolant candidates for molten salt reactors. However, there are several challenges, especially for structural materials due to the selective dissolution of chromium (Cr) in the molten chloride salts environment. Understanding the compatibility of uranium (U), which is used as nuclear fuel in molten salt reactors, with Cr in molten chloride salts is critical for designing the molten salt reactor structure. Therefore, in this study, the cyclic voltammetry (CV) was used to investigate the electrochemical behaviors of U and Cr. The diffusion coefficients and formal potentials were obtained. The electrochemical properties of uranium and chromium were investigated by CV in molten NaCl-MgCl2 salt at 600°C. Tungsten rods for working and counter electrode, and Ag/AgCl for reference electrode were utilized in this experiment. UCl3 made from the chemical dissolution of U rods and CrCl2 (Sigma-Aldrich, 99.99%) were used. Diffusion coefficients (D) of U and Cr were calculated by measuring reduction peak current of U3+/U and Cr2+/Cr from CV curves and using the Berzins-Delahay equation; D (U3+/U) = 3.0×10-5 cm2s-1 and D (Cr2+/Cr) = 3.3×10-5 cm2s-1. The formal potentials were also calculated by using the reduction peak potential obtained from CV results; E0’ (U3+/U) = -1.173 V and E0’ (Cr2+/Cr) = -0.321 V. The ionization tendency was investigated by comparing each reduction peak potential. The reduction peak potential Ep,c was increasing order of Ep,c (U3+/U) < Ep,c (Cr2+/Cr) < Ep,c (U4+/U3+). It can be seen that in the presence of U4+ and Cr metals, the Cr in the alloy can dissolve into Cr2+, but in the presence of U3+ and Cr metals, the Cr in the alloy does not dissolve into Cr2+. By analyzing the CV curve, diffusion coefficients and formal standard potentials were obtained. The result of comparing reduction peak potentials suggests that the nuclear fuel using U4+ should be inhibited to prevent the selective dissolution of Cr.
The ultimate objective of deep geological repositories is to achieve complete segregation of hazardous radioactive waste from the biosphere. Thus, given the possibility of leaks in the distant future, it is crucial to evaluate the capability of clay minerals to fulfill their promising role as both engineered and natural barriers. Selenium-79, a long-lived fission product originating from uranium- 235, holds significant importance due to its high mobility resulting from the predominant anionic form of selenium. To investigate the retardation behaviors of Se(IV) in clay media by sorption, a series of batch sorption experiments were conducted. The batch samples consisted of Se(IV) ions dissolved in 0.1 M NaCl solutions, along with clay minerals including kaolinite, montmorillonite, and illite-smectite mixed layers. The pH of the samples was also varied, reflecting the shift in the predominant selenium species from selenious acid to selenite ion as the environment can shift from slightly acidic to alkaline conditions. This alteration in pH concurrently promotes the competition of hydroxide ions for Se(IV) sorption on the mineral surface as the pH increases and impedes the selective attachment of selenium. The acquired experimental data were fitted through Langmuir and Freundlich sorption isotherms. From the Freundlich fit data, the distribution coefficient values of Se(IV) for kaolinite, montmorillonite, and illite-smectite mixed layer were derived, which exhibited a clear decrease from 91, 110, 62 L/kg at a pH of 3.2 to 16, 6.3, 12 L/kg at a pH of 7.5, respectively. These values derived over the pH range provide quantitative guidance essential for the safety assessment of clay mineral barriers, contributing to a more informed site selection process for deep geological repositories.
This program aims to build a specialized and converged educational platform for the training of students in the back-end nuclear fuel cycle and cultivate integrated human resources encompassing majors, generations, and fields. To achieve this, we have established an infrastructure for integrated education and training in the radiochemistry and back-end nuclear fuel cycle and operated specialized educational courses linked with special lectures, experimental practices, and field trips. Firstly, to construct an integrated educational and training infrastructure for the back-end nuclear fuel cycle, we formed a committee of experts from both inside and outside the institution and built an advanced radiochemistry laboratory equipped with physical and chemical analysis instruments. Through a comprehensive educational program involving theory, experiments, and discussions, we have established an integrated curriculum across adjacent majors and interdisciplinary studies. We also operate short-term education and experimental training programs (e.g., summer and winter schools for the back-end nuclear fuel cycle). Secondly, the program has connected leading researchers domestically and internationally, as well as the next generation of scholars. The program offers long-term educational opportunities and internships targeting both undergraduate and graduate students. To support this, we continuously offer expert colloquiums and individual research internships. Through regular committee meetings and workshops, we focus on nurturing the integrated talents necessary for the back-end nuclear fuel cycle. Through this program, students from various fields are being trained as competent integrated human resources capable of addressing various issues in the back-end nuclear fuel cycle. It is expected that this will enable us to supply specialized technical personnel in the back-end nuclear field in line with mid-to-long-term demands.
The Fukushima-Daiichi accident in 2011 revealed the limitations of Zr-alloys in accident scenarios where severe steam oxidation led to the liberation of heat and hydrogen and the destruction of the reactor core. In response to this accident, there has been a concerted effort by industry, national laboratories, and universities to develop cladding and fuel materials for lightwater reactors (LWRs) that are more accident tolerant. The near-term approach has been to develop coatings for Zr-alloys that would provide additional safety and operational margin by virtue of its excellent corrosion/oxidation resistance at both normal and accident conditions. The designs being considered for implementation by major nuclear fuel suppliers include a thin Cr or a ceramic coating on the conventional LWR fuel cladding. For improved economics, the industries are also considering ATF coated cladding with high enrichment fuel (up to 8%) to achieve high burnup (> 75 GWd/MTU). While the development of ATF concepts (i.e., the front end of the fuel cycle), including coated claddings and doped fuels have progressed at an accelerated pace, relatively less attention has been devoted to the used fuel disposition of ATF fuels (i.e., the backend of the fuel cycle). For accelerated deployment of the ATF designs in the current LWR fleet, it is necessary to investigate technical aspects of the ATF used nuclear fuel (UNF) management in transportation, storage, and disposal. This presentation will provide a brief overview of state-of-the-art ATF developments and list out potential considerations to apply the fuels into back-end fuel cycle. New test plan should be planned to compare the characteristics of current LWR used nuclear fuels with those of the new fuel designs. For example, research focus can be understanding of ATF used fuel particulate size and quantity (at high burnup condition) and mechanical integrity of coated cladding under normal and off-normal conditions during transportation and long-term storage. Finally, the impacts of CRUD on the new fuel cladding, increased container weight, temperature, and radiation level to the back-end fuel cycle activities need to be investigated.
This article examines the consequences of a significant spent fuel management decision or event in the United States, South Korea and Taiwan. For the United States, it is the financial impact of the Department of Energy’s inability to take possession of spent fuel from commercial nuclear power companies beginning in 1998 as directed by Congress. For South Korea, it is the potential financial and socioeconomic impact of the successful construction, licensing and operation of a low and intermediate level waste disposal facility on the siting of a spent fuel/high level waste repository. For Taiwan, it is the operational impact of the Kuosheng 1 reactor running out of space in its spent fuel pool. From these, it draws six broad lessons other countries new to, or preparing for, nuclear energy production might take from these experiences. These include conservative planning, treating the back-end of the fuel cycle holistically and building trust through a step-by-step approach to waste disposal.
원자력의 중흥기를 맞이하여 민감한 핵연료주기 기술의 무분별한 확장을 억제하고자 다양한 핵연료주 기 다자 방안이 제시되고 있다. 현재 원자력 공급국 위주의 핵연료주기 다자화가 추진되고 있는 실정에서 후행 핵연료주기 기술의 다자화 추진 추이를 파악하고자 사용후핵연료 공동 관리 시설에 대한 분석 결과 를 검토하였다. 또한 후행 핵연료주기 연구개발 시설의 다자화를 제안하고 기대효과와 문제점을 검토한 후 이를 실현하기 위한 추진방안을 도출하였다.
후행 핵연료주기 경제성 평가는 추정 비용의 불확실성, 평가 대상기간의 장기성, 적용 할인율에 따른 계산결과의 변동성 등 많은 불확실성을 내포하고 있기 때문에 평가기관 또는 평가자에 따라 그 결과가 서로 상이하다. 본고에서는 지금까지 수행된 주요 경제성 평가 연구들을 조사/분석하여 그 특징과 한계를 알아봄으로써 현재 국내에서 추진되고 있는 사용후핵연료 공론화 및 후행 핵연료주기 정책 연구 추진에 기초자료로 활용될 수 있도록 하고자 하였다. 분석 결과 사용후핵연료 재활용 옵션에 비해 직접처분 옵션이 유리하나, 입력 자료로 사용된 파라미터 값에 따라 결과의 불확실성이 많이 나타나 이 부분에 대한 추가적인 연구가 필요하다는 사실을 알 수 있었다.