검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2017.11 KCI 등재 서비스 종료(열람 제한)
        Copula 함수 기반의 모형들은 가뭄빈도해석 및 수문시계열분석 등 수문학적 모델링을 위해 다각적으로 활용되고 있다. 그러나 기존 연구에서는 Copula 함수 및 주변확률분포 매개변수에 대한 불확실성을 정량적으로 평가할 수 있는 모형의 개발 사례는 국내외적으로 미진한 실정이다. 이러한 점에서 본 연구에서는 기존 Copula 모형에 Bayesian 기법을 도입하여 매개변수의 불확실성을 평가할 수 있는 이변량 가뭄빈도해석 기법을 개발 하였다. 본 연구에서는 우선적으로 모의자료를 대상으로 모형의 적합성을 평가하였으며, 모형 적용결과 가정한 매개변수를 정확하게 재추정하는 것을 확인할 수 있다. 최종적으로 기 개발된 Bayesian Copula 함수 기반의 이변량 가뭄빈도해석 모형을 한강유역에 적용하여 최근 2013~2015 년에 가뭄 사상을 평가하였다. 서울, 경기 및 강원 지역에서 특히 가뭄이 심한 것으로 나타났으며, 대부분의 지역에서 결합재현기간이 100년을 상회하는 것으로 평가되었다. 본 연구를 통해 제안된 모형의 검증과정과 도출된 결과를 기준으로 판단해보면 가뭄자료의 분포특성 및 자료간의 상관성을 효과적으로 재현하는데 유리할 뿐만 아니라 매개변수의 불확실성을 평가할 수 있는 장점을 확인할 수 있었다.
        2.
        2015.02 서비스 종료(열람 제한)
        기후변화 모델을 통해 미래 전망에 대한 연구를 수행하는 것은 다양한 분야에서의 적응과 대응 전략을 수립하고 이상기후에 대한 영향을 최소화하고자 하는데 그 목적이 있다. 본 연구에서는 총 20개의 기후변화 모델 자료(1981∼2100년)를 수집하였으며 미래 시나리오는 RCP 4.5와 8.5시나리오를 사용하였다. 한강유역을 대상으로 지역오차보정을 통해 지역적인 스케일의 불일치를 개선하고 특히, 미래 시나리오에 대해서는 비정상성 분위사상법을 통해 미래 시나리오의 추세가 왜곡되지 않도록 하는 NSQM기법을 제안하였다. 베이지안 모델 평균기법(BMA)을 적용하여 각 관측소별로 가중치가 높은 모델만을 선별한 최적의 모델 조합을 통해 강우자료의 정확성과 신뢰도를 확보하였다. 베이지안 앙상블 강우의 R2=0.54, NSE=0.53, RMSE=90.49 mm로 단일모델에 비해 상대적으로 개선된 결과를 나타내었다. 미래 시나리오에 대한 전망결과 온실가스 배출농도가 높은 RCP 8.5 시나리오의 증가율이 RCP 4.5 시나리오에 비해 더 크게 나타났다. 또한 극치수문사상분석을 위해 GEV Scaling과 SPI가뭄지수를 이용한 홍수 및 가뭄의 IDF와 SDF곡선을 전망하였다. 확률강우량 산정 결과 관측기간의 500년 빈도, 지속시간 10분에 해당되는 강우강도가 224.1 mm/hr인 것에 비하여 RCP 4.5, RCP 8.5 시나리오 각각 279.8 mm/hr, 299.7 mm/hr로 기준 시나리오에 비해 증가하는 전망 결과를 나타냈다. 가뭄의 경우, 한강유역은 가뭄에 대한 민감도가 낮은 것으로 전망되었다. 본 연구를 통해 불확실성을 줄이고 다양한 통계적인 분석결과를 제시함으로써 극치수문사상의 전망이 가능하였다. 이를 통해 수자원 변동성과 취약성을 파악하고 수자원 계획 및 운영을 위한 정보 제공에 도움을 줄 것으로 판단된다.
        3.
        2014.02 서비스 종료(열람 제한)
        강우빈도해석에서 가장 핵심적인 부분은 확률분포(probability distribution)를 결정하는 것이다. 이러한 점에서 국내외에서는 다양한 확률분포를 적용하여 빈도해석을 수행하고 있으나, 확률분포를 결정하기 위한 기준이 명확하지 않다. 상대적으로 자료연한이 짧은 수문자료를 활용하여 장기간의 재현기간의 수문량을 추정하는 이유로 추정되는 수문량의 불확실성이 매우 큰 것으로 알려지고 있다. 국내에서는 일반적으로 40년의 관측자료를 대상으로 100년 빈도 이상의 확률수문량을 추정하게 됨으로서 재현기간의 큰 확률수문량 추정시 불확실성이 가중될 수 밖에 없다. 이러한 점에서 본 연구에서는 강우빈도해석시 주로 이용되는 Gumbel분포형과 GEV분포형을 대상으로 매개변수의 불확실성을 정량적으로 해석하기 위한 방안으로 Hierarchical Bayesian 기법과 연계한 매개변수 추정방안을 제시하고자 한다. 이와 함께 매개변수의 불확실성과 매개변수 수 등을 종합적으로 고려한 DIC(deviance information criteria) 기반의 확률분포형의 적합성 평가방안을 제시하고자 한다. 이를 위하여 본 연구에서는 국내 주요 강수관측지점의 다양한 지속시간에 대해서 모형을 적용하고 검증하였다.
        4.
        2011.12 KCI 등재 서비스 종료(열람 제한)
        This study applied the Bayesian method for the quantification of the parameter uncertainty of spatial linear mixed model in the estimation of the spatial distribution of probability rainfall. In the application of Bayesian method, the prior sensitivity analysis was implemented by using the priors normally selected in the existing studies which applied the Bayesian method for the puppose of assessing the influence which the selection of the priors of model parameters had on posteriors. As a result, the posteriors of parameters were differently estimated which priors were selected, and then in the case of the prior combination, F-S-E, the sizes of uncertainty intervals were minimum and the modes, means and medians of the posteriors were similar to the estimates using the existing classical methods. From the comparitive analysis between Bayesian and plug-in spatial predictions, we could find that the uncertainty of plug-in prediction could be slightly underestimated than that of Bayesian prediction.