본 연구의 목적은 기존의 하드 타입의 관성 센서를 대체할 수 있는 소프트 원단 기반 팔꿈치 굽힘 각 센서를 개발하 고, 이를 이용하여 굽힘 각도를 추정하는 시스템을 개발하는 것이다. 본 연구에서는 비교 선정을 위하여 Bergamo, E-band, Span cushion, Polyester의 서로 다른 역학적 특성을 가진 4종류 원단에 SWCNT (Single-Walled Carbon Nanotubes) 함침을 통해 전도성을 부여한 후 성능 평가를 통하여 하나의 원단을 선정하여 팔꿈치 굽힘 각 센서로 제작 하였다. 성능을 평가하는 지표로 게이지율(Gauge factor), 이력현상(Hysteresis) 및 센싱 범위를 사용하였다. 제작된 센 서를 통해 얻은 데이터는 bending 동작에서의 각도에 대한 센서 출력값의 변화와 extending 동작에서의 각도에 대한 센서 출력값의 변화가 다른 경향을 갖고 있기 때문에 두 가지 동작을 나누는 것을 1-step으로 하였다. 2-step으로, 데이 터의 복잡한 비선형 관계를 처리하고 높은 데이터 정확도를 달성하기 위해 MLP (Multi-Layer Perceptron)를 활용하였 다. 따라서 소프트 텍스타일 굽힘 센서를 제작하였고, MLP를 통해 비선형 관계를 처리하고 각도 추정이 가능해졌다. 본 연구 결과를 기반으로 다양한 스마트 웨어러블 및 헬스케어 분야에서 효과적으로 활용되기를 기대한다.
In order to provide the basis data for broad use and safe design of carbon fiber reinforced plastic, this paper aims at investigating the fracture behavior on CFRP specimen composed of one directional fiber through three point bending test. On the basis of experimental result, the improvement of composite layer specimen can be secured with the other data to compare the existing specimen. The fracture behavior happened at the experimental procedure is investigated in this study. The maximum loads of 1200 N, 1700N and 1600N are shown respectively at the specimens with the layer angles of 30°, 45° and 60°. The highest load is shown at the layer angle of 60° among all specimens and the longest displacement is maintained until each of the layer structure is broken down. The fracture due to the force applied from the outside can be prevented by applying the result of this study to the real structure. As structural safety can be evaluated and anticipated through this study, it is thought that the safe design is devoted.
In this study, the buckling restoration at CFRP 3-Point bending specimen composed of 30°, 45°and 60° is investigated when the pressure at the lowest position on the compressed specimen is eliminated. The fracture configuration and stress contour of the specimen can be seen according to the laminate angle of fiber. The result of this study is thought to apply the data for the safe design of CFRP structure.
The steel I-girder inserted circular steel pipe is a new structural cable-anchorage system that the circular guide pipe is connected and welded to the web of the I-girder for cable-stayed bridge. This guide pipe-anchor system has many merits of the structural and aesthetic performances. However, there has been little research into the behavior mechanism with respect to anchor angles and the strengthening methods against the sectional area reduction caused by the penetration of guide pipe. Therefore, this paper investigates an experimental behavior of the steel I-girder with circular steel tube which is fabricated 1/3 scale model as fundamental study to examine the flexural behavior and failure mode in the laboratory. Based on the comparison of test results and nonlinear FE analyses, it is found that FEM is suitable to estimate the stiffness of I-girder with circular tube in order to design the cable-stayed bridge.
This study investigates the wear degree of the shock absorber at the artificial knee joint due to bending degree of knee. As the stress distribution due to this angle is understood when the knee is bent, it can be shown how much and which configuration the wear of the shock absorber progresses in. On the basis of the analysis result, the stress applied at the shock absorber becomes higher and the equivalent stress becomes higher as the bending angle of knee is increased. The walking habit as the right attitude can be examined by applying the general joint as well as the artificial knee joint by using this study result