Recently, the engineering designer of injection mold has become more and more dependent on the CAE. In the design factors of injection mold, the shrinkage rate should be considered as one of the important performances to produce the reliable products. Therefore, the shrinkage rate can be mostly calculated by the MoldFlow and CATIA in the design process. However, it is not easy to predict the shrinkage rate of a plastic injection mold in its design process because the analysis can take minutes to hours, the high computational costs of performing the analysis limit their use in design optimization. In this study, the surrogate models based on the Taguchi Design in order to optimize the shrinkage rate of bevel gear injection mold is used instead of the original models, facilitating design optimal design.
The powder forging process is an attractive manufacturing route for bevel gears. It offers beneficial material utilization and the minimization of finishing operations over that of conventional hot forging. The paper describes the process conditions for the powder forging of bevel gear, for example, powder alloy design, preform design, deformation of sintered preform, forging processes. The characteristics of prototype gear are investigated with microstructure, the density distribution, surface roughness of tooth, bending strength test of tooth, etc. The results of the bending strength test may prove the mechanical properties of powder forged gear.