Lead free (1-x)(0.675BiFeO3-0.325BaTiO3)- xLiTaO3 (BFBTLT, x = 0, 0.01, 0.02, and 0.03, with 0.6 mol% MnO2 and 0.4 mol% CuO) were prepared by a solid state reaction method, followed by air quenching and their crystalline phase, morphology, dielectric, ferroelectric and piezoelectric properties were explored. An X-ray diffraction study indicates that lithium (Li) and tantalum (Ta) were fully incorporated in the BFBT materials with the absence of any secondary phases. Dense ceramic samples (> 92 %) with a wide range of grain sizes from 3.70 μm to 1.82 μm were obtained in the selected compositions (0 ≤ x ≤ 0.03) of BFBTLT system. The maximum temperatures (Tmax) were mostly higher than 420 oC in the studied composition range. The maximum values of maximum polarization (Pmax ≈ 31.01 μC/cm2), remnant polarization (Prem ≈ 22.82 μC/cm2) and static piezoelectric constant (d33 ≈ 145 pC/N) were obtained at BFBT-0.01LT composition with 0.6 mol% MnO2 and 0.4 mol% CuO. This study demonstrates that the high Tmax and d33 for BFBTLT ceramics are favorable for industrial applications.
The effects of an excess of Bi on the piezoelectric and dielectric properties of 0.60Bi1+xFeO3-0.40BaTiO3 (x = 0, 0.01, 0.03, 0.05, 0.07) were investigated. The ceramics were processed through a conventional solid state reaction method and then quenched after sintering at different temperatures in the range of 980~1070 oC. A single perovskite structure without any secondary phase was confirmed for all compositions and temperatures. It was found that excess Bi reduced the sintering temperatures, acted as a sintering aid and enhanced the properties in combination with quenching. Curie temperature (TC) was found to slightly increase due to the presence of excess Bi; electrical properties were also improved by quenching. At x = 0.03 and 1030 oC, remnant polarization (2Pr) was as high as 45.4 μC/cm2 and strain at 40 kV/cm was up to 0.176 %.